RECURSIVE 3-D ROAD AND RELATIVE EGO-STATE RECOGNITION

被引:290
作者
DICKMANNS, ED [1 ]
MYSLIWETZ, BD [1 ]
机构
[1] BAASEL LASERTECH,STARNBERG,GERMANY
关键词
INTELLIGENT CONTROL; PARALLEL ARCHITECTURES; REALTIME MACHINE VISION; RECURSIVE ESTIMATION; SPATIOTEMPORAL MODELING; 3-D IMAGE SEQUENCE PROCESSING; VISUAL NAVIGATION (OF ROAD VEHICLES);
D O I
10.1109/34.121789
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The general problem of recognizing both horizontal and vertical road curvature parameters while driving along the road has been solved recursively. A differential geometry representation decoupled for the two curvature components has been selected. Based on the planar solution of [7] and its refinements, a simple spatio-temporal model of the driving process allows us to take both spatial and temporal constraints into account effectively. The estimation process determines nine road and vehicle state parameters recursively at 25 Hz (40 ms) using four Intel 80286 and one 386 microprocessor. Results with the test vehicle (VaMoRs), which is a 5-ton van, are given for a hilly country road.
引用
收藏
页码:199 / 213
页数:15
相关论文
共 35 条
  • [11] DICKMANNS ED, 1990, AUG P IEEE WORKSH IN
  • [12] DICKMANNS ED, 1985, P C AUT 1985 AFCET T, P233
  • [13] DICKMANNS ED, 1988, MACHINE VISION APPLI, V1, P5223
  • [14] DICKMANNS ED, 1989, INTELLIGENT AUTONOMO, V2
  • [15] EBERL G, 1987, THESIS U BUNDESWEHR
  • [16] GENNERY DB, 1982, AUG P NAT C ART INT, P13
  • [17] GRAEFE V, 1984, ROBOTICS ARTIFICIAL, P301
  • [18] HARRIS C, 1990, SEP P BRIT MACH VIS, P73
  • [19] HEEL J, 1990, MIT1190 AI MEM
  • [20] Kalman R. E., 1960, J BASIC ENG-T ASME, V82, P35, DOI [10.1115/1.3662552, DOI 10.1115/1.3662552]