GRAVITY, NONCOMMUTATIVE GEOMETRY AND THE WODZICKI RESIDUE

被引:144
作者
KALAU, W
WALZE, M
机构
[1] Johannes Gutenberg Universität, Institut für Physik
关键词
NONCOMMUTATIVE GEOMETRY; GRAVITY; WODZICKI RESIDUE;
D O I
10.1016/0393-0440(94)00032-Y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive an action for gravity in the framework of non-commutative geometry by using the Wodzicki residue. We prove that for a Dirac operator D on an n dimensional compact Riemannian manifold with n greater than or equal to 4, n even, the Wodzicki residue Res(D--n+2) is the integral of the second coefficient of the heat kernel expansion of D-2, We use this result to derive a gravity action for commutative geometry which is the usual Einstein-Hilbert action and we also apply our results to a non-commutative extension which is given by the tenser product of the algebra of smooth functions on a manifold and a finite dimensional matrix algebra. In this case we obtain gravity with a cosmological constant.
引用
收藏
页码:327 / 344
页数:18
相关论文
共 25 条
[11]  
Connes A., 1990, GEOMETRIE NONCOMMUTA
[12]   NONCOMMUTATIVE GEOMETRY AND GRADED ALGEBRAS IN ELECTROWEAK INTERACTIONS [J].
COQUEREAUX, R ;
ESPOSITOFARESE, G ;
SCHECK, F .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (26) :6555-6593
[13]  
Coquereaux R., 1991, LECTURE NOTES PHYSIC, V375, P3
[14]  
DIXMIER J, 1966, CR ACAD SCI A MATH, V262, P1107
[15]  
HAUSSLING R, 1993, PHYS LETT B, V303, P265, DOI 10.1016/0370-2693(93)91430-U
[16]  
HAUSSLING R, 1991, PHYS LETT B, V260, P125, DOI 10.1016/0370-2693(91)90979-Z
[17]   DIFFERENTIAL-ALGEBRAS IN NONCOMMUTATIVE GEOMETRY [J].
KALAU, W ;
PAPADOPOULOS, NA ;
PLASS, J ;
WARZECHA, JM .
JOURNAL OF GEOMETRY AND PHYSICS, 1995, 16 (02) :149-167
[18]   A DETAILED ACCOUNT OF ALAIN CONNES VERSION OF THE STANDARD MODEL IN NONCOMMUTATIVE GEOMETRY .1. AND .2. [J].
KASTLER, D .
REVIEWS IN MATHEMATICAL PHYSICS, 1993, 5 (03) :477-532
[19]  
KASTLER D, 1992, CPT92P2824 MARS PREP
[20]  
KASTLER D, LECTURES NONCOMMUTAT