WITTENS IDENTITY FOR CHERN-SIMONS THEORY

被引:7
作者
BRUGMANN, B
机构
[1] Max-Planck-Institute of Physics, Munich
关键词
D O I
10.1007/BF00672798
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a simple heuristic calculational scheme to relate the expectation value of Wilson loops in Chern-Simons theory to the Jones polynomial. We consider the exponential of the generator of homotopy transformations which produces the finite loop deformations that define the crossing change formulas of knot polynomials. Applying this operator to the expectation value of Wilson loops for an unspecified measure, we find a set of conditions on the measure and the regularization such that the Jones polynomial is obtained.
引用
收藏
页码:145 / 168
页数:24
相关论文
共 34 条
[1]   REPRESENTATIONS OF THE HOLONOMY ALGEBRAS OF GRAVITY AND NON-ABELIAN GAUGE-THEORIES [J].
ASHTEKAR, A ;
ISHAM, CJ .
CLASSICAL AND QUANTUM GRAVITY, 1992, 9 (06) :1433-1467
[2]  
ASHTEKAR A, IN PRESS KNOTS QUANT
[3]  
ASHTEKAR A, 1991, LECTURES NONPERTURBA
[4]   QUANTUM GEOMETRY OF LOOPS AND THE EXACT SOLUBILITY OF NON-ABELIAN GAUGE CHERN-SIMONS THEORY .2. [J].
AWADA, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 129 (02) :329-349
[5]  
AXELROD S, 1993, MIT HEPTH9304087 PRE
[6]  
AXELROD S, 1992, 20TH P DGM C, P3
[7]   LINK INVARIANTS OF FINITE-TYPE AND PERTURBATION-THEORY [J].
BAEZ, JC .
LETTERS IN MATHEMATICAL PHYSICS, 1992, 26 (01) :43-51
[8]  
BAEZ JC, 1993, IN PRESS MAR P C QUA
[9]  
Bar-Natan D., 1992, VASSILIEV KNOT INVAR
[10]  
BARNATAN D, 1990, PERTURBATIVE CHERNSI