CURVE GEOMETRY AND FIELD TOPOLOGY IN 2 AND 3 DIMENSIONS

被引:3
作者
KARANIKAS, AI
KTORIDES, CN
机构
[1] MIT,CTR THEORET PHYS,NUCL SCI LAB,CAMBRIDGE,MA 02139
[2] MIT,DEPT PHYS,CAMBRIDGE,MA 02139
关键词
D O I
10.1016/0370-2693(90)90101-B
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
It is shown that extrinsic geometry of closed curves in two and three euclidean dimensions generates, in a certain well-defined local limit, corresponding topological terms in abelian gauge theories: U(1) instanton term in two dimensions and Chern-Simons term in three. © 1990.
引用
收藏
页码:83 / 89
页数:7
相关论文
共 9 条
[1]   A STUDY OF GAUGE-INVARIANT NON-LOCAL INTERACTIONS [J].
CHRETIEN, M ;
PEIERLS, RE .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1954, 223 (1155) :468-481
[2]   SURFACE SELF-INTERSECTIONS AND INSTANTONS [J].
KARANIKAS, AI ;
KTORIDES, CN .
PHYSICS LETTERS B, 1990, 235 (1-2) :90-96
[3]   NONPERTURBATIVE APPROACH TO YANG-MILLS THEORIES IN THE CONTINUUM .1. STRONG-COUPLING CONFINEMENT [J].
KARANIKAS, AI ;
KTORIDES, CN .
PHYSICAL REVIEW D, 1987, 35 (04) :1478-1483
[4]  
KARANIKAS AI, 1989, IN PRESS ANN PHYS NY
[5]  
POLYAKOV A, 1988, 49 HOUCH SESS
[6]   FERMI-BOSE TRANSMUTATIONS INDUCED BY GAUGE-FIELDS [J].
POLYAKOV, AM .
MODERN PHYSICS LETTERS A, 1988, 3 (03) :325-328
[7]   QUANTUM-FIELD THEORY AND THE JONES POLYNOMIAL [J].
WITTEN, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 121 (03) :351-399
[8]  
ZEMBA G, 1989, IN PRESS ANN PHYS NY
[9]  
ZEMBA G, 1989, IN PRESS MOD PHYS LE