ALGEBRAIC TREATMENT OF A DOUBLE RING-SHAPED OSCILLATOR

被引:31
作者
CARPIOBERNIDO, MV
BERNIDO, CC
机构
[1] SUNY ALBANY,DEPT PHYS,ALBANY,NY 12222
[2] CNRS LUMINY,CTR PHYS THEOR,F-13288 MARSEILLE 09,FRANCE
关键词
D O I
10.1016/0375-9601(89)90957-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1 / 3
页数:3
相关论文
共 8 条
[1]   THE GENERALIZED MORSE OSCILLATOR IN THE SO(4,2) DYNAMIC GROUP SCHEME [J].
BARUT, AO ;
INOMATA, A ;
WILSON, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (03) :605-611
[2]   AN EXACT SOLUTION OF A RING-SHAPED OSCILLATOR PLUS A C SEC2-THETA/R2 POTENTIAL [J].
CARPIOBERNIDO, MV ;
BERNIDO, CC .
PHYSICS LETTERS A, 1989, 134 (07) :395-399
[3]   DYNAMIC GROUP FOR A RING POTENTIAL [J].
GERRY, CC .
PHYSICS LETTERS A, 1986, 118 (09) :445-447
[4]   MOTION OF A BODY IN A RING-SHAPED POTENTIAL [J].
HARTMANN, H .
THEORETICA CHIMICA ACTA, 1972, 24 (2-3) :201-&
[5]   DYNAMIC INVARIANCE ALGEBRA OF THE HARTMANN POTENTIAL [J].
KIBLER, M ;
WINTERNITZ, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (13) :4097-4108
[6]   A SYSTEMATIC SEARCH FOR NONRELATIVISTIC SYSTEMS WITH DYNAMICAL SYMMETRIES .I. INTEGRALS OF MOTION [J].
MAKAROV, AA ;
SMORODIN.JA ;
VALIEV, K ;
Winternitz, P .
NUOVO CIMENTO A, 1967, 52 (04) :1061-+
[7]   A NEW RING-SHAPED POTENTIAL AND ITS DYNAMICAL INVARIANCE ALGEBRA [J].
QUESNE, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (14) :3093-3103
[8]  
Wybourne B.G., 1974, CLASSICAL GROUPS PHY