The Epstein-Barr virus nuclear antigen 2 (EBNA-2) acidic domain is essential for B-lymphocyte growth transformation and can activate transcription when brought to a promoter by a sequence-specific DNA-binding domain. We now show that the EBNA-2 acidic domain has slightly less activity than the prototypic acidic transactivator VP16 in depleting nuclear extracts of basal transcription activity. Like VP16, EBNA-2 associates with TFIIB, TAF40, and RPA70. However, EBNA-2 has much less avidity for TATA-binding protein. A Trp-to-Thr mutation within the acidic domain abolishes EBNA-2 transactivating activity and greatly compromises the association with TFIIB, TAF40, and RPA70, establishing a genetic linkage between transactivating activity and these associations.