RECURRENCE RELATIONS FOR RATIONAL CUBIC METHODS .2. THE CHEBYSHEV METHOD

被引:149
作者
CANDELA, V
MARQUINA, A
机构
[1] Departamento de Análisis Matemático, Burjassot, Valencia, 46100, C/Dr. Moliner
关键词
3RD ORDER ITERATIVE METHODS; A PRIORI ERROR BOUNDS; NONLINEAR EQUATIONS;
D O I
10.1007/BF02238803
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We continue the analysis of rational cubic methods, initiated in [7]. In this paper, we obtain a system of a priori error bounds for the Chebyshev method in Banach spaces through a local convergence theorem that provides sufficient conditions on the initial point in order to ensure the convergence of Chebyshev iterates. The error estimates are exact for second degree polynomials. We also discuss some applications.
引用
收藏
页码:355 / 367
页数:13
相关论文
共 23 条
[1]   ON THE CONVERGENCE OF HALLEYS METHOD [J].
ALEFELD, G .
AMERICAN MATHEMATICAL MONTHLY, 1981, 88 (07) :530-536
[2]  
ALTMAN M, 1961, B ACAD POLLON S SMAP, V9, P62
[3]   ON THE COMPLEXITY OF FAMILIAR FUNCTIONS AND NUMBERS [J].
BORWEIN, JM ;
BORWEIN, PB .
SIAM REVIEW, 1988, 30 (04) :589-601
[4]   ON ADDITION OF BINARY NUMBERS [J].
BRENT, R .
IEEE TRANSACTIONS ON COMPUTERS, 1970, C 19 (08) :758-&
[5]   FAST MULTIPLE-PRECISION EVALUATION OF ELEMENTARY FUNCTIONS [J].
BRENT, RP .
JOURNAL OF THE ACM, 1976, 23 (02) :242-251
[6]   HALLEYS VARIATION OF NEWTONS METHOD [J].
BROWN, GH .
AMERICAN MATHEMATICAL MONTHLY, 1977, 84 (09) :726-728
[7]   RECURRENCE RELATIONS FOR RATIONAL CUBIC METHODS .1. THE HALLEY METHOD [J].
CANDELA, V ;
MARQUINA, A .
COMPUTING, 1990, 44 (02) :169-184
[8]  
Doring B., 1970, Aplikace Matematiky, V15, P418
[10]   ON HALLEY ITERATION METHOD [J].
GANDER, W .
AMERICAN MATHEMATICAL MONTHLY, 1985, 92 (02) :131-134