REGULATION OF STRIATONIGRAL PRODYNORPHIN PEPTIDES BY DOPAMINERGIC AGENTS

被引:53
作者
TRUJILLO, KA
DAY, R
AKIL, H
机构
[1] Mental Health Research Institute, The University of Michigan, Ann Arbor
关键词
Amphetamine; Dopamine; Dynorphin; Enkephalin; Haloperidol; Hippocampus; Prodynorphin; Striatum; Substantia nigra;
D O I
10.1016/0006-8993(90)90977-J
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The primary purpose of this study was to examine the regulation of prodynorphin peptides by dopaminergic agents in the central nervous system. The indirectly acting catecholamine agonist d-amphetamine sulfate (AMPH) and the dopamine receptor antagonist haloperidol (HAL) were administered to rats across a variety of treatment schedules and drug doses. The striatum, substantia nigra and hippocampus were dissected and examined by radioimmunoassay for 5 different prodynorphin peptides, covering all 3 opioid domains in the prodynorphin precursor: dynorphin A(1-8) and dynorphin A(1-17) of the dynorphin A domain, dynorphin B(1-13) of the dynorphin B domain, and α-neo-endorphin and ß-neo-endorphin of the neo-endorphin domain. In addition, the proenkephalin peptide Met-enkephalin-arg6-gly7-leu8 (MERGL) was examined in the striatum. AMPH administered one hour prior to sacrifice caused a dose-dependent depletion of prodynorphin peptides in both the striatum and substantia nigra. In animals treated with AMPH once each day for 7 days and sacrificed 24 h later, a dramatic dose-dependent increase in prodynorphin peptides was observed in these brain regions. Animals treated with AMPH once each day for 7 days and sacrificed one hour after the final injections showed no changes in prodynorphin peptides. In addition to changes in individual prodynorphin peptides, AMPH treatment caused alterations in the relationships between intermediate peptides (dynorphin A(1-17) and α-neo-endorphin) and their immediate products (dynorphin A(1-8) and ß-neo-endorphin). AMPH caused no consistent changes in prodynorphin peptides in the hippocampus, or in MERGL in the striatum. Taken together these data suggest that acute dopaminergic activation causes depletion of dynorphins from striatonigral prodynorphin neurons, presumably due to dopamine-dependent release of these peptides; repeated activation causes repeated release, with a rebound increase in biosynthesis. HAL, in contrast to AMPH caused relatively subtle changes in striatonigral prodynorphin peptides. Although no significant changes in individual prodynorphin peptides were observed, HAL treatment caused a change in the relationship between dynorphin A(1-17) and dynorphin A(1-8), a change in direction to that observed with AMPH treatment. As has been previously reported, repeated HAL administration caused a dose-dependent increase in the proenkephalin peptide MERGL. The relatively subtle effects of HAL on prodynorphin peptides suggests that tonic dopamine activity is not important in the regulation of striatonigral prodynorphin neurons. The potential functional and behavioral significance of the present results are discussed. © 1990.
引用
收藏
页码:244 / 256
页数:13
相关论文
共 65 条
[1]  
ANDERSON K D, 1988, Society for Neuroscience Abstracts, V14, P76
[2]  
ANGRIST B, 1978, HDB PSYCHOPHARMACOLO, V11, P99
[3]  
BESSON M-J, 1986, Society for Neuroscience Abstracts, V12, P876
[4]   INFLUENCE OF ACUTE, SUBCHRONIC AND CHRONIC TREATMENT WITH NEUROLEPTIC (HALOPERIDOL) ON ENKEPHALINS AND THEIR PRECURSORS IN THE STRIATUM OF RAT-BRAIN [J].
BLANC, D ;
CUPO, A ;
CASTANAS, E ;
BOURHIM, N ;
GIRAUD, P ;
BANNON, MJ ;
EIDEN, LE .
NEUROPEPTIDES, 1985, 5 (4-6) :567-570
[5]   MET-ENKEPHALIN-LIKE AND DYNORPHIN-LIKE IMMUNOREACTIVITIES OF THE BASAL GANGLIA OF THE CAT [J].
CHESSELET, MF ;
GRAYBIEL, AM .
LIFE SCIENCES, 1983, 33 :37-40
[6]  
CHOU J, 1984, J PHARMACOL EXP THER, V229, P171
[7]  
CHRISTENSSONNYLANDER I, 1986, EXP BRAIN RES, V64, P169
[8]   SEQUENCE AND EXPRESSION OF THE RAT PRODYNORPHIN GENE [J].
CIVELLI, O ;
DOUGLASS, J ;
GOLDSTEIN, A ;
HERBERT, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1985, 82 (12) :4291-4295
[9]   DYNORPHIN1-8 AND DYNORPHIN1-9 ARE LIGANDS FOR THE KAPPA-SUBTYPE OF OPIATE RECEPTOR [J].
CORBETT, AD ;
PATERSON, SJ ;
MCKNIGHT, AT ;
MAGNAN, J ;
KOSTERLITZ, HW .
NATURE, 1982, 299 (5878) :79-81
[10]   NALOXONE ANTAGONIZES BEHAVIORAL-EFFECTS OF D-AMPHETAMINE IN MICE AND RATS [J].
DETTMAR, PW ;
COWAN, A ;
WALTER, DS .
NEUROPHARMACOLOGY, 1978, 17 (12) :1041-1044