THE COMPLEX FORMED BETWEEN TET REPRESSOR AND TETRACYCLINE-MG2+ REVEALS MECHANISM OF ANTIBIOTIC-RESISTANCE

被引:189
作者
KISKER, C
HINRICHS, W
TOVAR, K
HILLEN, W
SAENGER, W
机构
[1] FREE UNIV BERLIN,INST KRISTALLOG,D-14195 BERLIN,GERMANY
[2] UNIV ERLANGEN NURNBERG,INST MIKROBIOL & BIOCHEM,D-91058 ERLANGEN,GERMANY
关键词
ANTIBIOTIC RESISTANCE; TETRACYCLINE; TET REPRESSOR; X-RAY CRYSTALLOGRAPHY; HELIX-TURN-HELIX MOTIF;
D O I
10.1006/jmbi.1994.0138
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In recent years Gram-negative bacteria have developed several resistance mechanisms against the broad-spectrum antibiotic tetracycline (Tc). The most abundant mechanism involves a membrane-associated protein (TetA) that exports the antibiotic out of the bacterial cell before it can attach to the ribosomes and inhibit polypeptide elongation. The expression of the TetA protein is regulated by the Tet repressor (TetR). It occurs as a homodimer and binds with two alpha-helix-turn-alpha-helix motifs (HTH) to two tandemly orientated DNA operators, thereby blocking the expression of the associated genes, one encoding for TetA and the other for TetR. If Tc in complex with a divalent cation binds to TetR, a conformational change occurs and the induced TetR is then unable to bind to DNA. TetR of class D, TetR(D), was cocrystallized with tetracycline (7HTc) and Mg2+ in space group I4(1)22 and studied by X-ray diffraction. One TetR(D) monomer occupies the crystal asymmetric unit, and the dimer is formed by a crystallographic 2-fold rotation. The crystal structure was determined by multiple isomorphous replacement at 2.5 Angstrom resolution, and on this basis the structure of the nearly isomorphous complex with 7-chlorotetracycline, TetR(D)/(Mg 7ClTc)(+), has been refined to an X-factor of 18.3 % using all reflections to 2.1 Angstrom resolution. TetR(D) folds into ten alpha-helices with connecting turns and loops. The N-terminal three alpha-helices of the repressor form the DNA-binding domain, including the HTH with an inverse orientation compared with HTH in other DNA-binding proteins. The distance of 39 Angstrom between the two recognition helices explains the inability of the induced TetR to bind to B-form DNA. The core of the protein is formed by helices alpha 5 to alpha 10. It is responsible for dimerization and contains, for each monomer, a binding pocket that accommodates Tc in the presence of a divalent cation. The structure of the TetR(D)/(Mg 7ClTc)(+) complex reveals the octahedral coordination of Mg2+ by Tc (chelating O-11, and O-12), His100 N-e and by three water molecules; in addition there is an extended network of hydrogen bonding and van der Waals interactions formed between 7ClTe and TetR. The detailed view of the Tc-binding pocket and the interactions between the antibiotic and the repressor offers the first solid basis for rational tetracycline design, with the aim of circumventing resistance.
引用
收藏
页码:260 / 280
页数:21
相关论文
共 63 条
[1]   NUCLEOTIDE-SEQUENCE OF CLASS-D TETRACYCLINE RESISTANCE GENES FROM SALMONELLA-ORDONEZ [J].
ALLARD, JD ;
GIBSON, ML ;
VU, LH ;
NGUYEN, TT ;
BERTRAND, KP .
MOLECULAR & GENERAL GENETICS, 1993, 237 (1-2) :301-305
[2]  
[Anonymous], 1994, ACTA CRYSTALLOGR D, V50, P760
[3]   CONTACTS BETWEEN TET REPRESSOR AND TET OPERATOR REVEALED BY NEW RECOGNITION SPECIFICITIES OF SINGLE AMINO-ACID REPLACEMENT MUTANTS [J].
BAUMEISTER, R ;
HELBL, V ;
HILLEN, W .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 226 (04) :1257-1270
[4]  
BRENNAN RG, 1989, J BIOL CHEM, V264, P1903
[5]   PROTEIN DNA CONFORMATIONAL-CHANGES IN THE CRYSTAL-STRUCTURE OF A LAMBDA-CRO-OPERATOR COMPLEX [J].
BRENNAN, RG ;
RODERICK, SL ;
TAKEDA, Y ;
MATTHEWS, BW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (20) :8165-8169
[6]   CRYSTALLOGRAPHIC R-FACTOR REFINEMENT BY MOLECULAR-DYNAMICS [J].
BRUNGER, AT ;
KURIYAN, J ;
KARPLUS, M .
SCIENCE, 1987, 235 (4787) :458-460
[7]   STRUCTURAL-ANALYSIS OF THE OPERATOR BINDING DOMAIN OF TN10-ENCODED TET REPRESSOR - A TIME-RESOLVED FLUORESCENCE AND ANISOTROPY STUDY [J].
CHABBERT, M ;
HILLEN, W ;
HANSEN, D ;
TAKAHASHI, M ;
BOUSQUET, JA .
BIOCHEMISTRY, 1992, 31 (07) :1951-1960
[8]  
CHOPRA I, 1985, HDB EXPT PHARM TETRA, V78, P332
[9]   CO-CRYSTAL STRUCTURE OF THE HNF-3/FORK HEAD DNA-RECOGNITION MOTIF RESEMBLES HISTONE-H5 [J].
CLARK, KL ;
HALAY, ED ;
LAI, ES ;
BURLEY, SK .
NATURE, 1993, 364 (6436) :412-420
[10]   STRUCTURAL REQUIREMENTS OF TETRACYCLINE-TET REPRESSOR INTERACTION - DETERMINATION OF EQUILIBRIUM BINDING CONSTANTS FOR TETRACYCLINE ANALOGS WITH THE TET REPRESSOR [J].
DEGENKOLB, J ;
TAKAHASHI, M ;
ELLESTAD, GA ;
HILLEN, W .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1991, 35 (08) :1591-1595