ESTIMATION OF INTERFACES FROM BOUNDARY MEASUREMENTS

被引:14
作者
KUNISCH, K [1 ]
PAN, XS [1 ]
机构
[1] NANJING AERONAUT INST,DEPT MATH,NANJING 210016,PEOPLES R CHINA
关键词
INVERSE PROBLEMS; ELLIPTIC DIFFERENTIAL EQUATION; AUGMENTED LAGRANGIAN TECHNIQUES; INTERFACE PROBLEM;
D O I
10.1137/S0363012992226338
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The determination of an interface in an elliptic differential equation from Dirichlet and Neumann boundary data is investigated. Uniqueness of the function characterizing the interface is proved. For numerical purposes the problem is formulated as an optimization problem involving constraints that are based on potential theory. An augmented Lagrangian formulation is used for the solution of the optimization problem. Its convergence is investigated and numerical experiments are described.
引用
收藏
页码:1643 / 1674
页数:32
相关论文
共 23 条
[11]   THE AUGMENTED LAGRANGIAN METHOD FOR EQUALITY AND INEQUALITY CONSTRAINTS IN HILBERT-SPACES [J].
ITO, K ;
KUNISCH, K .
MATHEMATICAL PROGRAMMING, 1990, 46 (03) :341-360
[12]   A NUMERICAL STUDY OF AN AUGMENTED LAGRANGIAN METHOD FOR THE ESTIMATION OF PARAMETERS IN ELLIPTIC-SYSTEMS [J].
ITO, K ;
KROLLER, M ;
KUNISCH, K .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1991, 12 (04) :884-910
[13]  
Ito K., 1992, SIAM J OPTIMIZ, V2, P1, DOI [10.1137/0802019, DOI 10.1137/0802019]
[14]  
ITO K, AUGMENTED LAGRANGIAN
[15]   IDENTIFICATION OF PARAMETERS IN DISTRIBUTED PARAMETER-SYSTEMS BY REGULARIZATION [J].
KRAVARIS, C ;
SEINFELD, JH .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1985, 23 (02) :217-241
[16]  
LAMBECK K, 1988, OXFORD SCI PUBLICATI
[17]  
Lions J.L., 1988, FUNCTIONAL VARIATION, V2
[18]  
Miranda C., 1970, PARTIAL DIFFERENTIAL
[19]  
MORITZ H, 1989, ADV PHYSICAL GEODESY