FRACTAL BASINS AND CHAOTIC TRAJECTORIES IN MULTI-BLACK-HOLE SPACETIMES

被引:78
作者
DETTMANN, CP [1 ]
FRANKEL, NE [1 ]
CORNISH, NJ [1 ]
机构
[1] UNIV TORONTO, DEPT PHYS, TORONTO M5S 1A7, ONTARIO, CANADA
关键词
D O I
10.1103/PhysRevD.50.R618
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate the phase space for trajectories in multi-black-hole spacetimes. We find that complete, chaotic geodesics are well described by Lyapunov exponents, and that the attractor basin boundary scales as a fractal in a diffeomorphism-invariant manner.
引用
收藏
页码:R618 / R621
页数:4
相关论文
共 28 条
[11]   PERIODIC-ORBITS AND CHAOS AROUND 2 BLACK-HOLES [J].
CONTOPOULOS, G .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1990, 431 (1881) :183-202
[12]  
DETTMANN CP, IN PRESS FRACTALS
[13]  
FALCONER K, 1990, FRACTAL GEOMETRY ITS
[14]   SOLUTIONS OF EINSTEIN-MAXWELL EQUATIONS WITH MANY BLACK HOLES [J].
HARTLE, JB ;
HAWKING, SW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1972, 26 (02) :87-&
[15]   THE MIXMASTER COSMOLOGY AS A DYNAMIC SYSTEM [J].
HOBILL, D ;
BERNSTEIN, D ;
WELGE, M ;
SIMKINS, D .
CLASSICAL AND QUANTUM GRAVITY, 1991, 8 (06) :1155-1171
[16]  
HOBILL D, 1991, ANN NY ACAD SCI, V631, P15
[17]   CHAOTIC MOTION OF TEST PARTICLES IN THE ERNST SPACE-TIME [J].
KARAS, V ;
VOKROUHLICKY, D .
GENERAL RELATIVITY AND GRAVITATION, 1992, 24 (07) :729-743
[18]   COSMOLOGICAL MULTI-BLACK-HOLE SOLUTIONS [J].
KASTOR, D ;
TRASCHEN, J .
PHYSICAL REVIEW D, 1993, 47 (12) :5370-5375
[19]   ON THE STOCHASTICITY IN RELATIVISTIC COSMOLOGY [J].
KHALATNIKOV, IM ;
LIFSHITZ, EM ;
KHANIN, KM ;
SHCHUR, LN ;
SINAI, YG .
JOURNAL OF STATISTICAL PHYSICS, 1985, 38 (1-2) :97-114
[20]  
Lichtenberg A. J., 1983, REGULAR STOCHASTIC M