LYAPUNOV FUNCTIONS FOR SEMIMARTINGALE REFLECTING BROWNIAN MOTIONS

被引:86
作者
DUPUIS, P [1 ]
WILLIAMS, RJ [1 ]
机构
[1] UNIV CALIF SAN DIEGO,DEPT MATH,LA JOLLA,CA 92093
关键词
RECURRENCE; LYAPUNOV FUNCTIONS; SEMIMARTINGALE REFLECTING BROWNIAN MOTIONS; SKOROKHOD PROBLEM; DYNAMICAL SYSTEM; OPTIMAL CONTROL;
D O I
10.1214/aop/1176988725
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that a sufficient condition for a semimartingale reflecting Brownian motion in an orthant (SRBM) to be positive recurrent is that all solutions of an associated deterministic Skorokhod problem are attracted to the origin. To prove this result, we construct a Lyapunov function for the SRBM.
引用
收藏
页码:680 / 702
页数:23
相关论文
共 25 条
[21]   A BOUNDARY PROPERTY OF SEMIMARTINGALE REFLECTING BROWNIAN MOTIONS [J].
REIMAN, MI ;
WILLIAMS, RJ .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 77 (01) :87-97
[22]  
Schrijver A., 1986, THEORY LINEAR INTEGE
[23]  
SPIVEY WA, 1970, LINEAR OPTIMIZATION
[24]   EXISTENCE AND UNIQUENESS OF SEMIMARTINGALE REFLECTING BROWNIAN MOTIONS IN AN ORTHANT [J].
TAYLOR, LM ;
WILLIAMS, RJ .
PROBABILITY THEORY AND RELATED FIELDS, 1993, 96 (03) :283-317
[25]   RECURRENCE CLASSIFICATION AND INVARIANT MEASURE FOR REFLECTED BROWNIAN-MOTION IN A WEDGE [J].
WILLIAMS, RJ .
ANNALS OF PROBABILITY, 1985, 13 (03) :758-778