ARITHMETIC REPRESENTATIONS OF CELLULAR-AUTOMATA

被引:5
作者
URIAS, J
机构
[1] Instituto de Investigación en Comunicación Optica, Universidad Autónoma de San Luis, Potosí, 78000 San Luis Potosí, SLP
来源
PHYSICA D | 1993年 / 68卷 / 3-4期
关键词
D O I
10.1016/0167-2789(93)90136-O
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One- and two-dimensional cellular automata (CA) are described in terms of arithmetic relations. Interpreted as finite state machines, CA are shown to be equivalent to an updating unit that reads, processes and writes data on the array of cells. For 2D Von Neumann CA dynamics is described as a linear lattice of locally coupled 1D CA. The coupling is between nearest neighbors through a set of subrules, equivalent to the usual rules for Von Neumann neighborhoods. Finally, a measure theoretic entropy for one-dimensional CA is introduced to characterize spatial complexity and some numerical results are presented.
引用
收藏
页码:437 / 446
页数:10
相关论文
共 18 条
[11]   TWO-DIMENSIONAL CELLULAR AUTOMATA [J].
PACKARD, NH ;
WOLFRAM, S .
JOURNAL OF STATISTICAL PHYSICS, 1985, 38 (5-6) :901-946
[12]  
UGALDE E, 1992, UNPUB COMMUN MATH PH
[13]   ONE-DIMENSIONAL CELLULAR AUTOMATA AS ARITHMETIC RECURSIONS [J].
URIAS, J .
PHYSICA D, 1989, 36 (1-2) :109-110
[14]   AN ALGEBRAIC MEASURE OF COMPLEXITY [J].
URIAS, J .
PHYSICA D, 1991, 47 (03) :498-508
[15]  
WILBUR WJ, 1986, PHYSICA D, V19, P397, DOI 10.1016/0167-2789(86)90066-7
[16]   STATISTICAL-MECHANICS OF CELLULAR AUTOMATA [J].
WOLFRAM, S .
REVIEWS OF MODERN PHYSICS, 1983, 55 (03) :601-644
[17]   COMPUTATION THEORY OF CELLULAR AUTOMATA [J].
WOLFRAM, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 96 (01) :15-57
[18]  
WOLFRAM S, 1986, THEORY APPLICATIONS