Anion Exchange Membrane Fuel Cells

被引:93
作者
Arges, Christopher G. [1 ]
Ramani, Vijay [2 ]
Pintauro, Peter N. [3 ,4 ]
机构
[1] IIT, Dept Chem & Biol Engn, Chicago, IL 60616 USA
[2] IIT, Dept Chem & Biol Engn, Chem Engn, Chicago, IL 60616 USA
[3] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37235 USA
[4] Vanderbilt Univ, Chem Engn, Nashville, TN 37235 USA
关键词
D O I
10.1149/2.F03102if
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Anion exchange membrane fuel cells (AEMFC) have evolved significantly as a viable alternative to proton exchange membrane fuel cell (PEMFC). An anion exchange membrane (AEM) in an anion exchange membrane fuel cells (AEMFC) conducts hydroxide anions during current flow, which offers several advantages. The oxygen reduction reaction (ORR) is much easier in alkaline environments than in acidic environments that facilitate the use of less expensive non-platinum group metal (PGM) catalysts with high stability in alkaline environments. The hydroxide ions in an AEMFC are generated during electrochemical oxygen reduction at the cathode. They are transported from the cathode to the anode through the anion conducting polymer electrolyte, wherein they combine with hydrogen to form water. The chemical degradation of AEM is largely from nucleophilic attack on the cationic fixed charged sites by hydroxide ions, which results in loss in the number of ion-exchange groups, with a subsequent decrease in OH- ion conductivity.
引用
收藏
页码:31 / 35
页数:5
相关论文
共 13 条
[1]  
Barbir F, 2005, SUSTAIN WORLD SER, P1
[2]   ANION-EXCHANGE MEMBRANES WITH IMPROVED ALKALINE STABILITY [J].
BAUER, B ;
STRATHMANN, H ;
EFFENBERGER, F .
DESALINATION, 1990, 79 (2-3) :125-144
[3]   Mechanism of tetraalkylammonium headgroup degradation in alkaline fuel cell membranes [J].
Chempath, Shaji ;
Einsla, Brian R. ;
Pratt, Lawrence R. ;
Macomber, Clay S. ;
Boncella, James M. ;
Rau, Jonathan A. ;
Pivovar, Bryan S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (09) :3179-3182
[4]   Direct borohydride fuel cells [J].
de Leon, CP ;
Walsh, FC ;
Pletcher, D ;
Browning, DJ ;
Lakeman, JB .
JOURNAL OF POWER SOURCES, 2006, 155 (02) :172-181
[5]   Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs [J].
Gasteiger, HA ;
Kocha, SS ;
Sompalli, B ;
Wagner, FT .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2005, 56 (1-2) :9-35
[6]   A Soluble and Highly Conductive Ionomer for High-Performance Hydroxide Exchange Membrane Fuel Cells [J].
Gu, Shuang ;
Cai, Rui ;
Luo, Ting ;
Chen, Zhongwei ;
Sun, Minwei ;
Liu, Yan ;
He, Gaohong ;
Yan, Yushan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (35) :6499-6502
[7]   Anion-exchange membranes containing diamines: preparation and stability in alkaline solution [J].
Komkova, EN ;
Stamatialis, DF ;
Strathmann, H ;
Wessling, M .
JOURNAL OF MEMBRANE SCIENCE, 2004, 244 (1-2) :25-34
[8]  
Lee K. M., 2009, EL SOC M ABSTR VIENN, V2009-02
[9]   Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts [J].
Lu, Shanfu ;
Pan, Jing ;
Huang, Aibin ;
Zhuang, Lin ;
Lu, Juntao .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (52) :20611-20614
[10]   Decomposition pathways of an alkaline fuel cell membrane material component via evolved gas analysis [J].
Macomber, C. S. ;
Boncella, J. M. ;
Pivovar, B. S. ;
Rau, J. A. .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2008, 93 (01) :225-229