ONLINE BACKPROPAGATION IN 2-LAYERED NEURAL NETWORKS

被引:52
作者
RIEGLER, P
BIEHL, M
机构
[1] Inst. fur Theor. Phys., Julius-Maximilians-Univ., Wurzburg
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1995年 / 28卷 / 20期
关键词
D O I
10.1088/0305-4470/28/20/002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an exact analysis of learning a rule by on-line gradient descent in a two-layered neural network with adjustable hidden-to-output weights (backpropagation of error). Results are compared with the training of networks having the same architecture but fixed weights in the second layer.
引用
收藏
页码:L507 / L513
页数:7
相关论文
共 13 条
  • [1] A THEORY OF ADAPTIVE PATTERN CLASSIFIERS
    AMARI, S
    [J]. IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS, 1967, EC16 (03): : 299 - +
  • [2] BACKPROPAGATION AND STOCHASTIC GRADIENT DESCENT METHOD
    AMARI, S
    [J]. NEUROCOMPUTING, 1993, 5 (4-5) : 185 - 196
  • [3] LEARNING BY ONLINE GRADIENT DESCENT
    BIEHL, M
    SCHWARZE, H
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (03): : 643 - 656
  • [4] Chauvin Y., 1995, BACKPROPAGATION THEO
  • [5] ONLINE LEARNING IN THE COMMITTEE MACHINE
    COPELLI, M
    CATICHA, N
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (06): : 1615 - 1625
  • [6] Hertz J., 1991, INTRO THEORY NEURAL
  • [7] HESKES T, 1993, MATH F NEURAL NETWOR
  • [8] OPPER M, IN PRESS PHYSICS NEU, V3
  • [9] RIEGLER P, UNPUB
  • [10] EXACT SOLUTION FOR ONLINE LEARNING IN MULTILAYER NEURAL NETWORKS
    SAAD, D
    SOLLA, SA
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (21) : 4337 - 4340