h expansion for the periodic orbit quantization of chaotic systems

被引:42
作者
Alonso, D. [1 ]
Gaspard, P. [1 ]
机构
[1] Univ Libre Bruxelles, Ctr Nonlinear Phenomena & Complex Syst, B-1050 Brussels, Belgium
关键词
D O I
10.1063/1.165964
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We report the results of a periodic orbit quantization of classically chaotic billiards beyond Gutzwiller approximation in terms of asymptotic series in powers of the Planck constant (or in powers of the inverse of the wave number kappa in billiards). We derive explicit formulas for the kappa(-1) approximation of our semiclassical expansion. We illustrate our theory with the classically chaotic scattering of a wave on three disks. The accuracy on the real parts of the scattering resonances is improved by one order of magnitude.
引用
收藏
页码:601 / 612
页数:12
相关论文
共 29 条
[1]  
Abramowitz M.., 1972, HDB MATH FUNCTIONS
[2]   DISTRIBUTION OF EIGENFREQUENCIES FOR WAVE-EQUATION IN A FINITE DOMAIN .3. EIGENFREQUENCY DENSITY OSCILLATIONS [J].
BALIAN, R ;
BLOCH, C .
ANNALS OF PHYSICS, 1972, 69 (01) :76-&
[3]   QUANTIZING A CLASSICALLY ERGODIC SYSTEM - SINAI BILLIARD AND THE KKR METHOD [J].
BERRY, MV .
ANNALS OF PHYSICS, 1981, 131 (01) :163-216
[4]   UNSTABLE PERIODIC-ORBITS IN THE STADIUM BILLIARD [J].
BIHAM, O ;
KVALE, M .
PHYSICAL REVIEW A, 1992, 46 (10) :6334-6339
[5]   BIFURCATION TO CHAOTIC SCATTERING [J].
BLEHER, S ;
GREBOGI, C ;
OTT, E .
PHYSICA D, 1990, 46 (01) :87-121
[6]   PERIODIC-ORBIT QUANTIZATION OF CHAOTIC SYSTEMS [J].
CVITANOVIC, P ;
ECKHARDT, B .
PHYSICAL REVIEW LETTERS, 1989, 63 (08) :823-826
[7]  
Cvitanovic P., 1991, NONLINEARITY UNPUB
[8]   H-EXPANSION FOR THE PERIODIC-ORBIT QUANTIZATION OF HYPERBOLIC SYSTEMS [J].
GASPARD, P ;
ALONSO, D .
PHYSICAL REVIEW A, 1993, 47 (05) :R3468-R3468
[9]  
GASPARD P, 1989, J CHEM PHYS, V90, P2242, DOI 10.1063/1.456018
[10]   EXACT QUANTIZATION OF THE SCATTERING FROM A CLASSICALLY CHAOTIC REPELLOR [J].
GASPARD, P ;
RICE, SA .
JOURNAL OF CHEMICAL PHYSICS, 1989, 90 (04) :2255-2262