PHASE-TRANSITION IN THE 3-DIMENSIONAL CHIRAL FIELD

被引:75
作者
AREFEVA, IY [1 ]
机构
[1] VA STEKLOV MATH INST,LENINGRAD,USSR
关键词
D O I
10.1016/0003-4916(79)90361-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The essentially nonlinear chiral field in three dimensional space time non-renormalizable in the usual perturbation expansion is studied. We consider systematic 1 N expansion for this model. In the framework of the latter a phase transition takes place: above the critical point the theory is in the O(N) symmetric phase, below it the O(N) symmetry breaks. The 1 N renormalized expansion for both phases is described and the connection between the non-renormalizability of the conventional perturbation theory and the non-analytic dependence on the coupling constant is established. © 1979.
引用
收藏
页码:393 / 406
页数:14
相关论文
共 42 条
[21]  
FEINBERG G, 1964, PHYS REV, V132, P2724
[22]   THE AXIAL VECTOR CURRENT IN BETA-DECAY [J].
GELLMANN, M ;
LEVY, M .
NUOVO CIMENTO, 1960, 16 (04) :705-726
[23]   DYNAMICAL SYMMETRY BREAKING IN ASYMPTOTICALLY FREE FIELD-THEORIES [J].
GROSS, DJ ;
NEVEU, A .
PHYSICAL REVIEW D, 1974, 10 (10) :3235-3253
[24]   SPECIAL CLASS OF FEYNMAN INTEGRALS IN 2-DIMENSIONAL SPACE-TIME [J].
KALLEN, G ;
TOLL, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (02) :299-&
[25]   LARGE-N BEHAVIOR FOR INDEPENDENT-VALUE MODELS [J].
KLAUDER, JR ;
NARNHOFER, H .
PHYSICAL REVIEW D, 1976, 13 (02) :257-266
[26]   GROUND-STATE OF O(N) -GAMMA PHI4 MODEL [J].
KOBAYASHI, M ;
KUGO, T .
PROGRESS OF THEORETICAL PHYSICS, 1975, 54 (05) :1537-1545
[27]   APPLICATION OF XI-LIMITING PROCESS TO INTERMEDIATE BOSONS [J].
LEE, TD .
PHYSICAL REVIEW, 1962, 128 (02) :899-&
[28]  
Okubo S., 1954, PROG THEOR PHYS, V11, P80, DOI [10.1143/PTP.11.80, DOI 10.1143/PTP.11.80]
[29]   THEORY OF NON-RENORMALIZABLE INTERACTIONS - LARGE N EXPANSION [J].
PARISI, G .
NUCLEAR PHYSICS B, 1975, 100 (02) :368-388
[30]  
POHLMEYER K, 1976, RENORMALIZATION THEO, P461