A CONSISTENT SHELL THEORY FOR FINITE DEFORMATIONS

被引:21
作者
BASAR, Y
KRATZIG, WB
机构
关键词
D O I
10.1007/BF01175797
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
引用
收藏
页码:73 / 87
页数:15
相关论文
共 14 条
[1]  
[Anonymous], 1968, THEORETICAL ELASTICI
[2]   THE STRUCTURE OF CONSISTENT INCREMENTAL THEORIES FOR GEOMETRICALLY NONLINEAR SHELLS AND THEIR OPERATOR FORMULATION [J].
BASAR, Y .
INGENIEUR ARCHIV, 1986, 56 (03) :209-220
[3]   A CONSISTENT THEORY OF GEOMETRICALLY NONLINEAR SHELLS WITH AN INDEPENDENT ROTATION VECTOR [J].
BASAR, Y .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1987, 23 (10) :1401-1415
[4]   A CONSISTENT THEORY FOR SHELLS WITH FINITE DISPLACEMENTS [J].
BASAR, Y .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1986, 66 (07) :297-308
[5]  
BASAR Y, 1985, MECHANIK FLACHENTRAG
[6]   TENSOR-ORIENTED FORMULATION OF NONLINEAR, FINITE SHELL ELEMENTS [J].
HARTE, R ;
KRATZIG, WB .
INGENIEUR ARCHIV, 1986, 56 (02) :114-129
[7]  
Koiter W.T., 1966, P KON NED AKAD WET B, V69, P1
[8]   OPTIMAL BASIC SHELL EQUATIONS AND THEIR EFFICIENCY [J].
KRATZIG, WB .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1974, 54 (05) :265-276
[9]   GENERAL SHELL THEORY OF ARBITRARY MATERIAL AND DEFORMATION [J].
KRATZIG, WB .
INGENIEUR ARCHIV, 1971, 40 (05) :311-&
[10]  
NOLTE LP, 1983, 39 RUHR U I MECH MIT