POLYNOMIAL EQUATIONS FOR THE LINEAR MMSE STATE ESTIMATION

被引:24
作者
CHISCI, L
MOSCA, E
机构
[1] Dipartimento di Sistemi e Informatica, Universitá di Firenze, Firenze
关键词
Bilateral Diophantine Equations - Minimum Mean Square Error - MMSE State Estimation Problem - Polynomial Matrices;
D O I
10.1109/9.135499
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The linear minimum mean square error state estimation problem is solved via spectral factorization and a pair of bilateral Diophantine equations. Detectability and/or stabilizability requirements in the Riccati-based solution context are expressed in terms of stability of greatest common right and left divisors of polynomial matrices.
引用
收藏
页码:623 / 626
页数:4
相关论文
共 7 条
[1]   CONTINUOUS-TIME LQ REGULATOR DESIGN BY POLYNOMIAL EQUATIONS [J].
CASAVOLA, A ;
GRIMBLE, MJ ;
MOSCA, E ;
NISTRI, P .
AUTOMATICA, 1991, 27 (03) :555-558
[2]   POLYNOMIAL SYSTEMS-APPROACH TO OPTIMAL LINEAR-FILTERING AND PREDICTION [J].
GRIMBLE, MJ .
INTERNATIONAL JOURNAL OF CONTROL, 1985, 41 (06) :1545-1564
[3]   OPTIMAL MULTIVARIABLE LQG CONTROL USING A SINGLE DIOPHANTINE EQUATION [J].
HUNT, KJ ;
SEBEK, M ;
GRIMBLE, MJ .
INTERNATIONAL JOURNAL OF CONTROL, 1987, 46 (04) :1445-1453
[4]   NEW RESULTS IN STATE ESTIMATION AND REGULATION [J].
KUCERA, V .
AUTOMATICA, 1981, 17 (05) :745-748
[5]  
Kucera V., 1979, DISCRETE LINEAR CONT
[6]   ON THE POLYNOMIAL EQUATIONS FOR THE MIMO LQ STOCHASTIC REGULATOR [J].
MOSCA, E ;
GIARRE, L ;
CASAVOLA, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (03) :320-322
[7]  
MOSCA E, 1989, P WORKSHOP RICCATI E, P8