Previous studies characterized macromolecular differences between Xenopus and Rana transcription factor IIIA (TFIIIA) (Gaskins et al., 1989, Nucl. Acids Res. 17, 781-794). In the present study, cDNAs for TFIIIA from Xenopus borealls and Rana catesbeiana (American bullfrog) were cloned and sequenced in order to gain molecular insight into the structure, function, and species variation of TFIIIA and the TFIIIA-type zinc finger. X. borealis and R. catesbeianaTFIIIAs have 339 and 335 amino acids respectively, 5 and 9 fewer than X. laevls TFIIIA. X. borealis TFIIIA exhibited 84% sequence homology (55 amino acid differences) with X. laevis TFIIIA and R. catesbeiana TFIIIA exhibited 63% homology (128 amino acid changes) with X. laevis TFIIIA. This sequence variation is not random; the C-terminal halves of these TFIIIAs contain substantially more non-conservative changes than the N-terminal halves. In particular, the N-terminal region of TFIIIA (that region forming strong DNA contacts) is the most conserved and the C-terminal tall (that region involved in transcription promotion) the most divergent. Hydropathy analyses of these sequences revealed zinc finger periodicity in the N-terminal halves, extreme hydrophilicity in the C-termlnal halves, and a different C-terminal tall hydropathy for R. catesbeiana TFIIIA. Although considerable sequence variation exists in these TRIIIA zinc fingers, the Cys/His, Tyr/Phe and Leu residues are strictly conserved between X. laevis and X. borealis. Strict conservation of only the Cys/His motif is observed between X. laevis and catesbeiana TFIIIA. Overall, Cys/His zinc fingers in TFIIIA are much less conserved than Cys/Cys fingers in erythroid transcription factor (Eryf 1) and also less conserved than homeo box domains in segmentation genes. The collective evidence indicates that TFIIIA evolved from a common precursor containing up to 12 finger domains which subsequently evolved at different rates. © 1990 Oxford University Press.