EXPONENTIALLY CONVERGENT AND NUMERICALLY EFFICIENT SOLUTION OF MAXWELLS EQUATIONS FOR LAMELLAR GRATINGS

被引:82
作者
MORF, RH
机构
[1] Paul Scherrer Institute Zurich, Zurich
来源
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION | 1995年 / 12卷 / 05期
关键词
D O I
10.1364/JOSAA.12.001043
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A new numerical mathematical method is presented for stack of lamellar gratings. the electromagnetic field in terms of the eigenfunctions of the Helmholtz equation. in turn expanded in terms of sets of polynomial basis functions. It is shown that, for arbitrary polarization and for both dielectrics and lossy metals, the eigenvalues and the eigenvectors and, consequently, the spectral location of resonances converge at an exponential rate with increasing dimension of the polynomial basis. For the solution of the boundary-value problem physical arguments are used to derive a new algorithm that is of high numerical accuracy and is inherently stable. Single-precision arithmetic is sufficient, even for the calculation of strong resonances.
引用
收藏
页码:1043 / 1056
页数:14
相关论文
共 16 条
[1]  
ABRAMOWITZ M, 1972, NBS APPL MATH SER, V55, P437
[2]  
Botten L. C., 1981, OPT ACTA, V28, P413
[3]   THE FINITELY CONDUCTING LAMELLAR DIFFRACTION GRATING [J].
BOTTEN, LC ;
CRAIG, MS ;
MCPHEDRAN, RC ;
ADAMS, JL ;
ANDREWARTHA, JR .
OPTICA ACTA, 1981, 28 (08) :1087-1102
[4]   HIGHLY CONDUCTING LAMELLAR DIFFRACTION GRATINGS [J].
BOTTEN, LC ;
CRAIG, MS ;
MCPHEDRAN, RC .
OPTICA ACTA, 1981, 28 (08) :1103-1106
[5]   ALGORITHM FOR THE RIGOROUS COUPLED-WAVE ANALYSIS OF GRATING DIFFRACTION [J].
CHATEAU, N ;
HUGONIN, JP .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (04) :1321-1331
[6]  
COLLATZ L, 1960, NUMERICAL TREATMENT, P49
[7]  
GOTTLIEB D, 1989, NUMERICAL ANAL SPECT
[8]  
GRADSHTEYN IS, 1965, TABLES INTEGRALS SER, P836
[9]  
HEINE C, IN PRESS APPL OPT, V34
[10]  
HERZIG HP, 1993, PERSPECTIVES PARALLE, P71