EDGE WAVES ALONG PERIODIC COASTLINES .2.

被引:67
作者
EVANS, DV
FERNYHOUGH, M
机构
[1] School of Mathematics, University of Bristol
关键词
D O I
10.1017/S0022112095003119
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Numerical evidence of the existence of edge waves travelling along a periodic coastline consisting of a straight and vertical cliff face from which protrudes an infinite number of identical rectangular barriers, each extending throughout the water depth, is given based on a Galerkin approximation to an integral representation of the problem derived using the linear theory of water waves.
引用
收藏
页码:307 / 325
页数:19
相关论文
共 15 条
[1]  
Erdelyi A., 1954, TABLES INTEGRAL TRAN, VI
[2]   TRAPPED MODES IN OPEN CHANNELS [J].
EVANS, DV ;
LINTON, CM .
JOURNAL OF FLUID MECHANICS, 1991, 225 :153-175
[3]   EXISTENCE THEOREMS FOR TRAPPED MODES [J].
EVANS, DV ;
LEVITIN, M ;
VASSILIEV, D .
JOURNAL OF FLUID MECHANICS, 1994, 261 :21-31
[4]   TRAPPED ACOUSTIC MODES [J].
EVANS, DV .
IMA JOURNAL OF APPLIED MATHEMATICS, 1992, 49 (01) :45-60
[5]   EDGE WAVES ALONG PERIODIC COASTLINES [J].
EVANS, DV ;
LINTON, CM .
QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1993, 46 :643-656
[6]  
Jones D. S., 1986, ACOUSTIC ELECTROMAGN
[7]   THE EIGENVALUES OF DEL-2-MU + LAMBDA-MU 0 WHEN THE BOUNDARY CONDITIONS ARE GIVEN ON SEMI-INFINITE DOMAINS [J].
JONES, DS .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1953, 49 (04) :668-684
[8]  
Mittra R., 1971, ANAL TECHNIQUES THEO
[9]  
PETIT R, 1980, TOPICS CURRENT PHYSI
[10]   COMPLEMENTARY APPROXIMATIONS TO WAVE SCATTERING BY VERTICAL BARRIERS [J].
PORTER, R ;
EVANS, DV .
JOURNAL OF FLUID MECHANICS, 1995, 294 :155-180