PIERCING CONVEX-SETS AND THE HADWIGER-DEBRUNNER (P, Q)-PROBLEM

被引:103
作者
ALON, N
KLEITMAN, DJ
机构
[1] BELL COMMUN RES INC,MORRISTOWN,NJ 07960
[2] MIT,DEPT MATH,CAMBRIDGE,MA 02139
关键词
D O I
10.1016/0001-8708(92)90052-M
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A family of sets has the (p, q)property if among any p members of the family some q have a nonempty intersection. It is shown that for every p ≥ q ≥ d + 1 there is a c = c(p, q, d) < ∞ such that for every family J of compact, convex sets in Rd which has the (p, q) property there is a set of at most c points in Rd that intersects each member of J. This settles an old problem of Hadwiger and Debrunner. © 1992.
引用
收藏
页码:103 / 112
页数:10
相关论文
共 24 条
[1]  
ALON N, 1990, 31ST P IEEE S F COMP, P574
[2]  
ALON N, IN PRESS POINT SELEC
[3]  
Alon N., 1985, EUROP J COMB, V6, P211
[4]   A GENERALIZATION OF CARATHEODORYS THEOREM [J].
BARANY, I .
DISCRETE MATHEMATICS, 1982, 40 (2-3) :141-152
[5]  
BOROS E, 1984, DEDICATA, V17, P69
[6]  
Clarkson K. L., 1988, 29th Annual Symposium on Foundations of Computer Science (IEEE Cat. No.88CH2652-6), P452, DOI 10.1109/SFCS.1988.21961
[7]  
Danzer L., 1963, P S PURE MATH, P101, DOI [10.1090/pspum/007/0157289, DOI 10.1090/PSPUM/007/0157289, 10.1090/pspum/007, DOI 10.1090/PSPUM/007]
[8]  
DECAEN D, 1991, CURRENT STATUS TURAN
[9]  
Dolnikov V.L., 1972, SIBIRSKII MATEMATICE, V13, P886
[10]  
ECKHOFF J, HDB CONVEX GEOMETRY