PIERCING CONVEX-SETS AND THE HADWIGER-DEBRUNNER (P, Q)-PROBLEM

被引:103
作者
ALON, N
KLEITMAN, DJ
机构
[1] BELL COMMUN RES INC,MORRISTOWN,NJ 07960
[2] MIT,DEPT MATH,CAMBRIDGE,MA 02139
关键词
D O I
10.1016/0001-8708(92)90052-M
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A family of sets has the (p, q)property if among any p members of the family some q have a nonempty intersection. It is shown that for every p ≥ q ≥ d + 1 there is a c = c(p, q, d) < ∞ such that for every family J of compact, convex sets in Rd which has the (p, q) property there is a set of at most c points in Rd that intersects each member of J. This settles an old problem of Hadwiger and Debrunner. © 1992.
引用
收藏
页码:103 / 112
页数:10
相关论文
共 24 条
[21]   D-COLLAPSING AND NERVES OF FAMILIES OF CONVEX-SETS [J].
WEGNER, G .
ARCHIV DER MATHEMATIK, 1975, 26 (03) :317-321
[22]   UBER EINE KOMBINATORISCH-GEOMETRISCHE FRAGE VON HADWIGER UND DEBRUNNER [J].
WEGNER, G .
ISRAEL JOURNAL OF MATHEMATICS, 1965, 3 (04) :187-&
[23]  
WEGNER G, 1985, UBER HELLY GALLAISCH, V3, P277
[24]  
[No title captured]