ONE CANNOT HEAR THE SHAPE OF A DRUM

被引:234
作者
GORDON, C
WEBB, DL
WOLPERT, S
机构
关键词
D O I
10.1090/S0273-0979-1992-00289-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use an extension of Sunada's theorem to construct a nonisometric pair of isospectral simply connected domains in the Euclidean plane, thus answering negatively Kac's question, "can one hear the shape of a drum?" In order to construct simply connected examples, we exploit the observation that an orbifold whose underlying space is a simply connected manifold with boundary need not be simply connected as an orbifold.
引用
收藏
页码:134 / 138
页数:5
相关论文
共 23 条
[1]  
BERARD P, 1988, SEM BOUBAKI, V705
[2]  
BERARD P, IN PRESS MATH ANN
[3]   ON MANIFOLDS OF NEGATIVE CURVATURE WITH ISOSPECTRAL POTENTIALS [J].
BROOKS, R .
TOPOLOGY, 1987, 26 (01) :63-66
[4]   CONSTRUCTING ISOSPECTRAL MANIFOLDS [J].
BROOKS, R .
AMERICAN MATHEMATICAL MONTHLY, 1988, 95 (09) :823-839
[5]   ISOSPECTRAL SURFACES OF SMALL GENUS [J].
BROOKS, R ;
TSE, R .
NAGOYA MATHEMATICAL JOURNAL, 1987, 107 :13-24
[6]   ISOSPECTRAL RIEMANN SURFACES [J].
BUSER, P .
ANNALES DE L INSTITUT FOURIER, 1986, 36 (02) :167-192
[7]  
BUSER P, 1988, LECT NOTES MATH, V1339, P64
[8]  
DETURCK D, 1988, REND SEM FS U CAGL S, V58, P1
[9]   ISOSPECTRAL DEFORMATIONS .2. TRACE FORMULAS, METRICS, AND POTENTIALS [J].
DETURCK, DM ;
GORDON, CS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (08) :1067-1095
[10]   ISOSPECTRAL DEFORMATIONS .1. RIEMANNIAN STRUCTURES ON 2-STEP NILSPACES [J].
DETURCK, DM ;
GORDON, CS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1987, 40 (03) :367-387