ONE CANNOT HEAR THE SHAPE OF A DRUM

被引:238
作者
GORDON, C
WEBB, DL
WOLPERT, S
机构
关键词
D O I
10.1090/S0273-0979-1992-00289-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use an extension of Sunada's theorem to construct a nonisometric pair of isospectral simply connected domains in the Euclidean plane, thus answering negatively Kac's question, "can one hear the shape of a drum?" In order to construct simply connected examples, we exploit the observation that an orbifold whose underlying space is a simply connected manifold with boundary need not be simply connected as an orbifold.
引用
收藏
页码:134 / 138
页数:5
相关论文
共 23 条
[11]   WHEN YOU CANT HEAR THE SHAPE OF A MANIFOLD [J].
GORDON, CS .
MATHEMATICAL INTELLIGENCER, 1989, 11 (03) :39-47
[12]  
GORDON CS, 1984, J DIFFER GEOM, V19, P241
[13]  
IKEDA A, 1980, ANN SCI ECOLE NORM S, V13, P303
[14]   CAN ONE HEAR SHAPE OF A DRUM [J].
KAC, M .
AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (4P2) :1-&
[16]   THE GEOMETRIES OF 3-MANIFOLDS [J].
SCOTT, P .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1983, 15 (SEP) :401-487
[17]   RIEMANNIAN COVERINGS AND ISOSPECTRAL MANIFOLDS [J].
SUNADA, T .
ANNALS OF MATHEMATICS, 1985, 121 (01) :169-186
[18]  
THURSTON WP, 1976, UNPUB LECTURE NOTES
[19]  
URAKAWA H, 1982, ANN SCI ECOLE NORM S, V15, P441
[20]  
VHAVEL I, 1984, EIGENVALUES RIEMANNI