NEW RESULTS ON THE CAUCHY-PROBLEM FOR PARABOLIC-SYSTEMS AND EQUATIONS WITH STRONGLY NONLINEAR SOURCES

被引:23
作者
ANDREUCCI, D
机构
[1] Dip. di Matematica U. Dini, Università di Firenze, Firenze, 50134
关键词
D O I
10.1007/BF02567050
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider both degenerate and uniformly parabolic systems and equations, containing a forcing term (a "source") depending on the solution itself (see (1), (5), (6) below). The source is such that the solution may become unbounded iii a finite time, even if the initial data are bounded. In this connection we investigate the problem of the existence of non negative solutions defined for all positive times. Moreover, even the problem of the existence of local in time solutions is not trivial, owing to the effect of nonlinear sources of this kind. In fact (as a marked difference with the corresponding homogeneous problems), local solutions may exist only under certain restrictions on the local regularity of the initial data.
引用
收藏
页码:127 / 159
页数:33
相关论文
共 22 条
[1]   A NEW APPROACH TO INITIAL TRACES IN NONLINEAR FILTRATION [J].
ANDREUCCI, D ;
DIBENEDETTO, E .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1990, 7 (04) :305-334
[2]  
Andreucci D., 1991, ANN SCUOLA NORM-SCI, V18, P363
[3]  
ARONSON DG, 1983, T AM MATH SOC, V280, P351, DOI 10.2307/1999618
[4]   A NECESSARY AND SUFFICIENT CONDITIONS FOR EXISTENCE OF NON NEGATIVE SOLUTIONS FOR SOME SEMILINEAR NON MONOTONE EQUATIONS [J].
BARAS, P ;
PIERRE, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1985, 2 (03) :185-212
[5]   SOLUTIONS OF THE POROUS-MEDIUM EQUATION IN RN UNDER OPTIMAL CONDITIONS ON INITIAL VALUES [J].
BENILAN, P ;
CRANDALL, MG ;
PIERRE, M .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1984, 33 (01) :51-87
[6]   CONTINUITY OF WEAK SOLUTIONS TO A GENERAL POROUS-MEDIUM EQUATION [J].
DIBENEDETTO, E .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1983, 32 (01) :83-118
[7]  
DIBENEDETTO E, 1989, T AMS, V134, P187
[8]   BOUNDEDNESS AND BLOW UP FOR A SEMILINEAR REACTION DIFFUSION SYSTEM [J].
ESCOBEDO, M ;
HERRERO, MA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 89 (01) :176-202
[9]  
ESCOBEDO M, 1992, CR ACAD SCI I-MATH, V314, P735
[10]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109