A BOUNDARY INTEGRAL MODIFICATION OF THE GALERKIN LEAST-SQUARES FORMULATION FOR THE STOKES PROBLEM

被引:34
作者
DROUX, JJ [1 ]
HUGHES, TJR [1 ]
机构
[1] STANFORD UNIV,DIV APPL MECH,STANFORD,CA 94305
关键词
D O I
10.1016/0045-7825(94)90217-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A new boundary integral term is added to the Galerkin least squares (GLS) formulation. The new formulation compensates for a lack of consistency noted for the traditional GLS method when bilinear interpolation is used on quadrilateral elements. Exact solutions at the nodes are obtained for Poiseuille flow and another test problem, and the pressure singularity for the driven cavity is better captured.
引用
收藏
页码:173 / 182
页数:10
相关论文
共 8 条
[1]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[2]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[3]  
CIARLET PG, 1977, FINITE ELEMENT METHO
[4]  
CURELIER C, 1986, FINITE ELEMENT METHO
[5]  
DOUGLAS J, 1989, MATH COMPUT, V52, P495, DOI 10.1090/S0025-5718-1989-0958871-X
[6]  
Franca L. P., 1993, INCOMPRESSIBLE COMPU
[7]  
FRANCA LP, 1987, THESIS STANFORD U
[8]   A NEW FINITE-ELEMENT FORMULATION FOR COMPUTATIONAL FLUID-DYNAMICS .5. CIRCUMVENTING THE BABUSKA-BREZZI CONDITION - A STABLE PETROV-GALERKIN FORMULATION OF THE STOKES PROBLEM ACCOMMODATING EQUAL-ORDER INTERPOLATIONS [J].
HUGHES, TJR ;
FRANCA, LP ;
BALESTRA, M .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1986, 59 (01) :85-99