INSULIN-MEDIATED PSEUDOACROMEGALY - CLINICAL AND BIOCHEMICAL-CHARACTERIZATION OF A SYNDROME OF SELECTIVE INSULIN-RESISTANCE

被引:72
作者
FLIER, JS
MOLLER, DE
MOSES, AC
ORAHILLY, S
CHAIKEN, RL
GRIGORESCU, F
ELAHI, D
KAHN, BB
WEINREB, JE
EASTMAN, R
机构
[1] BETH ISRAEL HOSP, CHARLES A DANA RES INST, BOSTON, MA 02215 USA
[2] BETH ISRAEL HOSP, DEPT MED, BOSTON, MA 02215 USA
[3] BETH ISRAEL HOSP, HARVARD THORNDIKE LAB, BOSTON, MA 02215 USA
[4] CNRS, INSERM, F-34033 MONTPELLIER, FRANCE
[5] HARVARD UNIV, SCH MED, BOSTON, MA 02115 USA
[6] NIDDKD, DIABET BRANCH, BETHESDA, MD 20892 USA
关键词
D O I
10.1210/jc.76.6.1533
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
We have performed clinical, physiological, in vitro biochemical and genetic studies of a patient with severe insulin resistance associated with the phenotype of ''pseudoacromegaly,'' defined as the presence of acromegaloid features in the absence of elevated levels of GH or insulin-like growth factor-I (IGF-I). Despite marked hyperinsulinemia, insulin and IGF-I binding to circulating blood cells and cultured skin fibroblasts was normal. Insulin and IGF-1-stimulated autophosphorylation of their respective receptors in cultured skin fibroblasts was also normal. However, neither insulin nor IGF-I were able to stimulate 2-deoxy D-glucose uptake by cultured skin fibroblasts. In contrast, the ability of insulin and IGF-I (or IGF-II) to stimulate amino acid uptake and thymidine incorporation into DNA was not impaired. This unique discordant signaling defect through both insulin and IGF-I receptors appeared not to be the consequence of altered expression or primary structure of the insulin receptor or the GLUT-4 glucose transporter, as assessed by several genetic and biochemical techniques. GLUT-4 expression in muscle was normal on Western blots, and SSCP screening of all 11 exons of the gene for nucleotide variation revealed no variations from normal. DNA sequencing and SSCP screening of exons 2-22 of the insulin receptor gene revealed only one variation predicted to alter the amino acid sequence (Val985-->Met). No functional differences between Met985 and wild-type human insulin receptors were evident in studies performed with Chinese hamster ovary cell transfectants that overexpress either receptor. This data combined with our previously published epidemiological data concerning the frequency of the Met985 allele, indicate that this variant insulin receptor is not responsible for the insulin resistant glucose uptake or the clinical syndrome of pseudoacromegaly. We conclude that: 1) The molecular lesion responsible for the selective biochemical defect in this individual appears to involve a signaling intermediate required for insulin and IGF-I regulation of glucose transport, and/or an effector mechanism operative in this process. 2) Cells derived from this patient may be a valuable tool in the search for such molecular mechanisms. 3) The Met985 allele is a relatively common variant which has no demonstrable adverse consequences for insulin receptor function. 4) Pseudoacromegaly can be viewed as the expected result of hyperinsulinemia driving the unopposed mitogenic and anabolic actions of insulin.
引用
收藏
页码:1533 / 1541
页数:9
相关论文
共 33 条
[1]   A UNIQUE GROWTH-FACTOR IN PATIENTS WITH ACROMEGALOIDISM [J].
ASHCRAFT, MW ;
HARTZBAND, PI ;
VANHERLE, AJ ;
BERSCH, N ;
GOLDE, DW .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 1983, 57 (02) :272-276
[2]   HYPERVARIABLE C-TERMINAL DOMAIN OF RAB PROTEINS ACTS AS A TARGETING SIGNAL [J].
CHAVRIER, P ;
GORVEL, JP ;
STELZER, E ;
SIMONS, K ;
GRUENBERG, J ;
ZERIAL, M .
NATURE, 1991, 353 (6346) :769-772
[3]   MOLECULAR SCANNING OF INSULIN-RESPONSIVE GLUCOSE TRANSPORTER (GLUT4) GENE IN NIDDM SUBJECTS [J].
CHOI, WH ;
ORAHILLY, S ;
BUSE, JB ;
REES, A ;
MORGAN, R ;
FLIER, JS ;
MOLLER, DE .
DIABETES, 1991, 40 (12) :1712-1718
[4]   LEPRECHAUNISM - STUDIES OF THE RELATIONSHIP AMONG HYPERINSULINISM, INSULIN RESISTANCE, AND GROWTH-RETARDATION [J].
DERCOLE, AJ ;
UNDERWOOD, LE ;
GROELKE, J ;
PLET, A .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 1979, 48 (03) :495-502
[5]   THE HUMAN INSULIN-RECEPTOR CDNA - THE STRUCTURAL BASIS FOR HORMONE-ACTIVATED TRANSMEMBRANE SIGNALING [J].
EBINA, Y ;
ELLIS, L ;
JARNAGIN, K ;
EDERY, M ;
GRAF, L ;
CLAUSER, E ;
OU, JH ;
MASIARZ, F ;
KAN, YW ;
GOLDFINE, ID ;
ROTH, RA ;
RUTTER, WJ .
CELL, 1985, 40 (04) :747-758
[6]   MONOCLONAL-ANTIBODY TO THE TYPE-I INSULIN-LIKE GROWTH-FACTOR (IGF-I) RECEPTOR BLOCKS IGF-I RECEPTOR-MEDIATED DNA-SYNTHESIS - CLARIFICATION OF THE MITOGENIC MECHANISMS OF IGF-I AND INSULIN IN HUMAN-SKIN FIBROBLASTS [J].
FLIER, JS ;
USHER, P ;
MOSES, AC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (03) :664-668
[7]   CHARACTERIZATION OF ANTIBODIES TO INSULIN RECEPTOR - CAUSE OF INSULIN-RESISTANT DIABETES IN MAN [J].
FLIER, JS ;
KAHN, CR ;
JARRETT, DB ;
ROTH, J .
JOURNAL OF CLINICAL INVESTIGATION, 1976, 58 (06) :1442-1449
[8]  
FLIR JS, 1980, NEW ENGL J MED, V309, P970
[9]  
FLORESRIVEROS JR, 1989, J BIOL CHEM, V264, P21557
[10]   THE RAT INSULIN-RECEPTOR - PRIMARY STRUCTURE AND CONSERVATION OF TISSUE-SPECIFIC ALTERNATIVE MESSENGER-RNA SPLICING [J].
GOLDSTEIN, BJ ;
DUDLEY, AL .
MOLECULAR ENDOCRINOLOGY, 1990, 4 (02) :235-244