ABUNDANCE, VARIABILITY AND CHROMOSOMAL LOCATION OF MICROSATELLITES IN WHEAT

被引:541
作者
RODER, MS [1 ]
PLASCHKE, J [1 ]
KONIG, SU [1 ]
BORNER, A [1 ]
SORRELLS, ME [1 ]
TANKSLEY, SD [1 ]
GANAL, MW [1 ]
机构
[1] CORNELL UNIV, DEPT PLANT BREEDING & BIOMETRY, ITHACA, NY 14853 USA
来源
MOLECULAR AND GENERAL GENETICS | 1995年 / 246卷 / 03期
关键词
MICROSATELLITES; WHEAT (TRITICUM AESTIVUM); POLYMORPHISM; SEQUENCE TAGGED SITES (STSS); GENETIC MARKERS;
D O I
10.1007/BF00288605
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The potential of microsatellite sequences as genetic markers in hexaploid wheat (Triticum aestivum) was investigated with respect to their abundance, variability, chromosomal location and usefulness in related species. By screening a lambda phage library, the total number of (GA)(n) blocks was estimated to be 3.6 x 10(4) and the number of (GT)(n) blocks to be 2.3 x 10(4) per haploid wheat genome. This results in an average distance of approximately 270 kb between these two microsatellite types combined. Based on sequence analysis data from 70 isolated microsatellites, it was found that wheat microsatellites are relatively long containing up to 40 dinucleotide repeats. Of the tested primer pairs, 36% resulted in fragments with a size corresponding to the expected length of the sequenced microsatellite clone. The variability of 15 microsatellite markers was investigated on 18 wheat accessions. Significantly, more variation was detected with the microsatellite markers than with RFLP markers with, on average, 4.6 different alleles per microsatellite. The 15 PCR-amplified microsatellites were further localized on chromosome arms using cytogenetic stocks of Chinese Spring. Finally, the primers for the 15 wheat microsatellites were used for PCR amplification with rye (Secale cereale) and barley accessions (Hordeum vulgare, H. spontaneum). Amplified fragments were observed for ten primer pairs with barley DNA and for nine primer pairs with rye DNA as template. A microsatellite was found by dot blot analysis in the PCR products of barley and rye DNA for only one primer pair.
引用
收藏
页码:327 / 333
页数:7
相关论文
共 27 条
[1]  
AKKAYA MS, 1992, GENETICS, V132, P1131
[2]   OPTIMIZING PARENTAL SELECTION FOR GENETIC-LINKAGE MAPS [J].
ANDERSON, JA ;
CHURCHILL, GA ;
AUTRIQUE, JE ;
TANKSLEY, SD ;
SORRELLS, ME .
GENOME, 1993, 36 (01) :181-186
[3]   A GENETIC-LINKAGE MAP OF THE BOVINE GENOME [J].
BARENDSE, W ;
ARMITAGE, SM ;
KOSSAREK, LM ;
SHALOM, A ;
KIRKPATRICK, BW ;
RYAN, AM ;
CLAYTON, D ;
LI, L ;
NEIBERGS, HL ;
ZHANG, N ;
GROSSE, WM ;
WEISS, J ;
CREIGHTON, P ;
MCCARTHY, F ;
RON, M ;
TEALE, AJ ;
FRIES, R ;
MCGRAW, RA ;
MOORE, SS ;
GEORGES, M ;
SOLLER, M ;
WOMACK, JE ;
HETZEL, DJS .
NATURE GENETICS, 1994, 6 (03) :227-235
[4]   ASSIGNMENT OF 30 MICROSATELLITE LOCI TO THE LINKAGE MAP OF ARABIDOPSIS [J].
BELL, CJ ;
ECKER, JR .
GENOMICS, 1994, 19 (01) :137-144
[5]  
BISHOP MD, 1994, GENETICS, V136, P619
[6]  
BOTSTEIN D, 1980, AM J HUM GENET, V32, P314
[7]   PRE-GERMINATION GENOTYPIC SCREENING USING PCR AMPLIFICATION OF HALF-SEEDS [J].
CHUNWONGSE, J ;
MARTIN, GB ;
TANKSLEY, SD .
THEORETICAL AND APPLIED GENETICS, 1993, 86 (06) :694-698
[8]   ABUNDANCE AND DNA-SEQUENCE OF 2-BASE REPEAT REGIONS IN TROPICAL TREE GENOMES [J].
CONDIT, R ;
HUBBELL, SP .
GENOME, 1991, 34 (01) :66-71
[9]   A GENETIC-LINKAGE MAP OF THE MOUSE - CURRENT APPLICATIONS AND FUTURE-PROSPECTS [J].
COPELAND, NG ;
JENKINS, NA ;
GILBERT, DJ ;
EPPIG, JT ;
MALTAIS, LJ ;
MILLER, JC ;
DIETRICH, WF ;
WEAVER, A ;
LINCOLN, SE ;
STEEN, RG ;
STEIN, LD ;
NADEAU, JH ;
LANDER, ES .
SCIENCE, 1993, 262 (5130) :57-66
[10]   A TECHNIQUE FOR RADIOLABELING DNA RESTRICTION ENDONUCLEASE FRAGMENTS TO HIGH SPECIFIC ACTIVITY [J].
FEINBERG, AP ;
VOGELSTEIN, B .
ANALYTICAL BIOCHEMISTRY, 1983, 132 (01) :6-13