OPTIMAL CONTROLS OF NAVIER-STOKES EQUATIONS

被引:84
作者
DESAI, M
ITO, K
机构
[1] Univ of Southern California, Los Angeles, CA
关键词
FLOW CONTROL; NAVIER-STOKES EQUATION; AUGMENTED LAGRANGIAN METHOD;
D O I
10.1137/S0363012992224972
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies optimal control problems of the fluid flow governed by the Navier-Stokes equations. Two control problems are formulated in the case of the driven cavity and flow through a channel with sudden expansion and solved successfully using a numerical optimization algorithm based on the augmented Lagrangian method. Existence and the first-order optimality condition of the optimal control are established. A convergence result on the augmented Lagrangian method for nonsmooth cost functional is obtained.
引用
收藏
页码:1428 / 1446
页数:19
相关论文
共 18 条
[1]  
Abergel F., 1990, THEOR COMP FLUID DYN, V1, P303, DOI [10.1007/bf00271794, DOI 10.1007/BF00271794]
[2]   POINTWISE CONTROL OF BURGERS-EQUATION - A NUMERICAL APPROACH [J].
DEAN, EJ ;
GUBERNATIS, P .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1991, 22 (07) :93-100
[3]  
DESAI MC, 1990, THESIS BROWN U
[4]  
FATTORINI HO, IN PRESS P ROY SOC A
[5]  
GIRAULT V, 1984, FINIE ELEMENT METHOD
[6]  
Glowinski R., 1984, SPRINGER SERIES COMP
[7]   BOUNDARY VELOCITY CONTROL OF INCOMPRESSIBLE-FLOW WITH AN APPLICATION TO VISCOUS DRAG REDUCTION [J].
GUNZBURGER, MD ;
HOU, LS ;
SVOBODNY, TP .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1992, 30 (01) :167-181
[8]  
Hestenes M. R., 1969, Journal of Optimization Theory and Applications, V4, P303, DOI 10.1007/BF00927673
[9]  
Istrtescu VI., 1981, FIXED POINT THEORY I
[10]   THE AUGMENTED LAGRANGIAN METHOD FOR PARAMETER-ESTIMATION IN ELLIPTIC-SYSTEMS [J].
ITO, K ;
KUNISCH, K .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1990, 28 (01) :113-136