NEW RESULTS ON OPTIMAL ENTROPY-CONSTRAINED QUANTIZATION

被引:8
作者
KIEFFER, JC
JAHNS, TM
OBULJEN, VA
机构
[1] UNIV BEOGRAD, FAC SCI, DEPT MATH, YU-11000 BEOGRAD, YUGOSLAVIA
[2] AT&T, LINCROFT, NJ 07738 USA
关键词
D O I
10.1109/18.21252
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:1250 / 1258
页数:9
相关论文
共 8 条
[1]   OPTIMUM QUANTIZERS AND PERMUTATION CODES [J].
BERGER, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1972, 18 (06) :759-+
[2]   OPTIMUM QUANTIZER PERFORMANCE FOR A CLASS OF NON-GAUSSIAN MEMORYLESS SOURCES [J].
FARVARDIN, N ;
MODESTINO, JW .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1984, 30 (03) :485-497
[3]  
Fleischer P. E., 1964, IEEE INT CONV REC, V12, P104
[4]   ASYMPTOTICALLY EFFICIENT QUANTIZING [J].
GISH, H ;
PIERCE, JN .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1968, 14 (05) :676-+
[5]  
JAHNS TM, 1985, THESIS U ILLINOIS UR
[6]   EXPONENTIAL RATE OF CONVERGENCE FOR LLOYDS METHOD-I [J].
KIEFFER, JC .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1982, 28 (02) :205-210
[7]  
LLOYD SP, 1982, IEEE T INFORM THEORY, V28, P129, DOI 10.1109/TIT.1982.1056489