LEAFY COTYLEDON MUTANTS OF ARABIDOPSIS

被引:336
作者
MEINKE, DW [1 ]
FRANZMANN, LH [1 ]
NICKLE, TC [1 ]
YEUNG, EC [1 ]
机构
[1] UNIV CALGARY, DEPT BIOL SCI, CALGARY T2N 1N4, AB, CANADA
关键词
D O I
10.1105/tpc.6.8.1049
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have previously described a homeotic leafy cotyledon (lec) mutant of Arabidopsis that exhibits striking defects in embryonic maturation and produces viviparous embryos with cotyledons that are partially transformed into leaves. In this study, we present further details on the developmental anatomy of mutant embryos, characterize their response to abscisic acid (ABA) in culture, describe other mutants with related phenotypes, and summarize studies with double mutants. Our results indicate that immature embryos precociously enter a germination pathway after the torpedo stage of development and then acquire characteristics normally restricted to vegetative parts of the plant. In contrast to other viviparous mutants of maize (vp1) and Arabidopsis (abi3) that produce ABA-insensitive embryos, immature lec embryos are sensitive to ABA in culture. ABA is therefore necessary but not sufficient for embryonic maturation in Arabidopsis. Three other mutants that produce trichomes on cotyledons following precocious germination in culture are described. One mutant is allelic to lec1, another is a fusca mutant (fus3), and the third defines a new locus (lec2). Mutant embryos differ in morphology, desiccation tolerance, pattern of anthocyanin accumulation, presence of storage materials, size and frequency of trichomes on cotyledons, and timing of precocious germination in culture. The leafy cotyledon phenotype has therefore allowed the identification of an important network of regulatory genes with overlapping functions during embryonic maturation in Arabidopsis.
引用
收藏
页码:1049 / 1064
页数:16
相关论文
共 43 条
[1]  
BAUMLEIN H, 1994, IN PRESS PLANT J
[2]   GROWTH-INVITRO OF ARRESTED EMBRYOS FROM LETHAL MUTANTS OF ARABIDOPSIS-THALIANA [J].
BAUS, AD ;
FRANZMANN, L ;
MEINKE, DW .
THEORETICAL AND APPLIED GENETICS, 1986, 72 (05) :577-586
[3]  
BRONNER R, 1975, STAIN TECHNOL, V50, P1
[4]   A FUSCA GENE OF ARABIDOPSIS ENCODES A NOVEL PROTEIN ESSENTIAL FOR PLANT DEVELOPMENT [J].
CASTLE, LA ;
MEINKE, DW .
PLANT CELL, 1994, 6 (01) :25-41
[5]   GENETIC AND MOLECULAR CHARACTERIZATION OF EMBRYONIC MUTANTS IDENTIFIED FOLLOWING SEED TRANSFORMATION IN ARABIDOPSIS [J].
CASTLE, LA ;
ERRAMPALLI, D ;
ATHERTON, TL ;
FRANZMANN, LH ;
YOON, ES ;
MEINKE, DW .
MOLECULAR & GENERAL GENETICS, 1993, 241 (5-6) :504-514
[6]   THE WAR OF THE WHORLS - GENETIC INTERACTIONS CONTROLLING FLOWER DEVELOPMENT [J].
COEN, ES ;
MEYEROWITZ, EM .
NATURE, 1991, 353 (6339) :31-37
[7]   COP1, AN ARABIDOPSIS REGULATORY GENE, ENCODES A PROTEIN WITH BOTH A ZINC-BINDING MOTIF AND A G-BETA HOMOLOGOUS DOMAIN [J].
DENG, XW ;
MATSUI, M ;
WEI, N ;
WAGNER, D ;
CHU, AM ;
FELDMANN, KA ;
QUAIL, PH .
CELL, 1992, 71 (05) :791-801
[8]  
ERRAMPALLI D, 1991, PLANT CELL, V3, P149, DOI 10.1105/tpc.3.2.149
[9]   T-DNA INSERTION MUTAGENESIS IN ARABIDOPSIS - MUTATIONAL SPECTRUM [J].
FELDMANN, KA .
PLANT JOURNAL, 1991, 1 (01) :71-82
[10]   3 CLASSES OF ABSCISIC-ACID (ABA)-INSENSITIVE MUTATIONS OF ARABIDOPSIS DEFINE GENES THAT CONTROL OVERLAPPING SUBSETS OF ABA RESPONSES [J].
FINKELSTEIN, RR ;
SOMERVILLE, CR .
PLANT PHYSIOLOGY, 1990, 94 (03) :1172-1179