A SURVEY OF MATRIX INVERSE EIGENVALUE PROBLEMS

被引:190
作者
BOLEY, D [1 ]
GOLUB, GH [1 ]
机构
[1] STANFORD UNIV, DEPT COMP SCI, STANFORD, CA 94305 USA
关键词
D O I
10.1088/0266-5611/3/4/010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:595 / 622
页数:28
相关论文
共 30 条
[11]   CALCULATION OF GAUSS QUADRATURE RULES [J].
GOLUB, GH ;
WELSCH, JH .
MATHEMATICS OF COMPUTATION, 1969, 23 (106) :221-&
[12]   THE NUMERICALLY STABLE RECONSTRUCTION OF JACOBI MATRICES FROM SPECTRAL DATA [J].
GRAGG, WB ;
HARROD, WJ .
NUMERISCHE MATHEMATIK, 1984, 44 (03) :317-335
[13]   INVERSE EIGENVALUE PROBLEMS FOR JACOBI MATRICES [J].
HALD, OH .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1976, 14 (01) :63-85
[14]  
Hochstadt H., 1974, LINEAR ALGEBRA APPL, V8, P435
[15]   A NUMERICAL-METHOD FOR THE INVERSE STURM-LIOUVILLE PROBLEM [J].
PAINE, J .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1984, 5 (01) :149-156
[16]   NUMERICAL-METHODS FOR ESTABLISHING SOLUTIONS TO THE INVERSE PROBLEM OF ELECTROMAGNETIC INDUCTION [J].
PARKER, RL ;
WHALER, KA .
JOURNAL OF GEOPHYSICAL RESEARCH, 1981, 86 (NB10) :9574-9584
[17]  
PARLETT B. N., 1980, SYMMETRIC EIGENVALUE, DOI DOI 10.1137/1.9781611971163
[18]  
RUTISHAUSER H, 1963, P S APPL MATH, V15, P219
[19]  
Stewart GW., 1973, INTRO MATRIX COMPUTA
[20]   A NUMERICAL DESIGN PROCEDURE FOR GENERAL CANONIC LC ONE-PORTS [J].
SUSSMANFORT, SE .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1982, 29 (09) :633-638