AN EXTENSION OF THE POTENTIAL REDUCTION ALGORITHM FOR LINEAR COMPLEMENTARITY-PROBLEMS WITH SOME PRIORITY GOALS

被引:3
作者
KALISKI, JA
YE, YY
机构
[1] Department of Management Sciences College, Business Administration The University of Iowa, Iowa City
基金
美国国家科学基金会;
关键词
D O I
10.1016/0024-3795(93)90270-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the potential reduction algorithm to solve the restricted convex linear complementarity problem (LCP) x(T)s = 0, x(I) = 0, s(J) = 0, s = Mx + q, and 0 less-than-or-equal-to x, s is-an-element-of R(n) for some index sets I and J. In polynomial time, the algorithm will either discover that no solution exists or generate a sequence of pairs (x(k), s(k)) which simultaneously drives (x(k))(T)S(k), x(I)k, and s(J)k to zero. In particular, we discuss how to apply the algorithm to solving the combined Phase I-Phase II convex LCP and to identifying a vertex linear programming solution.
引用
收藏
页码:35 / 50
页数:16
相关论文
共 14 条
[1]   A COMBINED PHASE-I PHASE-II PROJECTIVE ALGORITHM FOR LINEAR-PROGRAMMING [J].
ANSTREICHER, KM .
MATHEMATICAL PROGRAMMING, 1989, 43 (02) :209-223
[2]  
CHARNES A, 1961, MANAGEMENT MODELS IN
[3]   A NEW POLYNOMIAL-TIME ALGORITHM FOR LINEAR-PROGRAMMING [J].
KARMARKAR, N .
COMBINATORICA, 1984, 4 (04) :373-395
[4]   AN INTERIOR POINT POTENTIAL REDUCTION ALGORITHM FOR THE LINEAR COMPLEMENTARITY-PROBLEM [J].
KOJIMA, M ;
MEGIDDO, N ;
YE, YY .
MATHEMATICAL PROGRAMMING, 1992, 54 (03) :267-279
[5]   HOMOTOPY CONTINUATION METHODS FOR NONLINEAR COMPLEMENTARITY-PROBLEMS [J].
KOJIMA, M ;
MEGIDDO, N ;
NOMA, T .
MATHEMATICS OF OPERATIONS RESEARCH, 1991, 16 (04) :754-774
[6]   A POLYNOMIAL-TIME ALGORITHM FOR A CLASS OF LINEAR COMPLEMENTARITY-PROBLEMS [J].
KOJIMA, M ;
MIZUNO, S ;
YOSHISE, A .
MATHEMATICAL PROGRAMMING, 1989, 44 (01) :1-26
[7]  
LUSTIG IJ, 1989, PRIMAL DUAL INTERIOR
[8]  
McShane K. A., 1990, ORSA Journal on Computing, V1, P70, DOI 10.1287/ijoc.1.2.70
[9]  
MIZUNO S, 1990, IN PRESS MATH OPER R
[10]   A CENTERED PROJECTIVE ALGORITHM FOR LINEAR-PROGRAMMING [J].
TODD, MJ ;
YE, YY .
MATHEMATICS OF OPERATIONS RESEARCH, 1990, 15 (03) :508-529