ANALYTICAL DERIVATION OF THE SCALING LAW FOR THE INVERSE PARTICIPATION RATIO IN QUASI-ONE-DIMENSIONAL DISORDERED-SYSTEMS

被引:80
作者
FYODOROV, YV [1 ]
MIRLIN, AD [1 ]
机构
[1] UNIV ESSEN GESAMTHSCH,FACHBEREICH PHYS,W-4300 ESSEN 1,GERMANY
关键词
D O I
10.1103/PhysRevLett.69.1093
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a calculation of the inverse participation ratio in finite quasi-one-dimensional samples in the whole range of the scaling parameter within the framework of a one-dimensional nonlinear supermatrix sigma-model. The results are valid for both thick wires and random band matrices with large bandwidth and so are relevant for quantum chaos problems. The derived form of the scaling law exactly coincides with the empirical expression deduced earlier from results of computer simulations.
引用
收藏
页码:1093 / 1096
页数:4
相关论文
共 28 条
[21]  
MARICHEV OI, 1983, HDB INTEGRAL TRANSFO, P137
[22]   FINITE SIZE SCALING APPROACH TO ANDERSON LOCALIZATION [J].
PICHARD, JL ;
SARMA, G .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1981, 14 (06) :L127-L132
[23]   BROKEN SYMMETRIES AND LOCALIZATION LENGTHS IN ANDERSON INSULATORS - THEORY AND EXPERIMENT [J].
PICHARD, JL ;
SANQUER, M ;
SLEVIN, K ;
DEBRAY, P .
PHYSICAL REVIEW LETTERS, 1990, 65 (14) :1812-1815
[24]   QUANTUM SPECTRA AND TRANSITION FROM REGULAR TO CHAOTIC CLASSICAL MOTION [J].
SELIGMAN, TH ;
VERBAARSCHOT, JJM ;
ZIRNBAUER, MR .
PHYSICAL REVIEW LETTERS, 1984, 53 (03) :215-217
[25]   GRASSMANN INTEGRATION IN STOCHASTIC QUANTUM PHYSICS - THE CASE OF COMPOUND NUCLEUS SCATTERING [J].
VERBAARSCHOT, JJM ;
WEIDENMULLER, HA ;
ZIRNBAUER, MR .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1985, 129 (06) :367-438
[26]   GRADED SYMMETRY AND ANDERSON LOCALIZATION ON THE BETHE LATTICE FOR TIME-REVERSAL INVARIANT-SYSTEMS [J].
VERBAARSCHOT, JJM .
NUCLEAR PHYSICS B, 1988, 300 (02) :263-288
[27]   DISORDERED SYSTEM WITH N-ORBITALS PER SITE - LAGRANGE FORMULATION WITHOUT REPLICA TRICK, AND SCALING LAW FOR THE DENSITY OF STATES [J].
ZIEGLER, K .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1982, 48 (04) :293-304
[28]  
ZIRNBAUER MR, IN PRESS COMMUN MATH