THE DILATON EQUATION IN SEMIRIGID STRING THEORY

被引:20
作者
DISTLER, J [1 ]
NELSON, P [1 ]
机构
[1] UNIV PENN,DEPT PHYS,PHILADELPHIA,PA 19104
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(91)90002-F
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We show how to obtain explicit integration measures on ordinary moduli space corresponding to the correlation functions of pure two-dimensional topological gravity. In particular. our prescription tells how to remove the zero modes of the beta-gamma-system. We then use our formula to derive the "dilaton equation" introduced by E. Verlinde and H. Verlinde, a relation between the N-point and ( N - 1)-point correlations of this theory. Just as in critical string theory we use the fact that certain BRST-exact states fail to decouple. Instead they build up Cech classes, in this instance the Euler class of an N-times punctured surface. Throughout we use the "semirigid' formulation of topological gravity. Thus the Liouville sector of other approaches never enters.
引用
收藏
页码:255 / 272
页数:18
相关论文
共 30 条
[1]   FERMIONIC STRINGS IN THE OPERATOR-FORMALISM [J].
ALVAREZGAUME, L ;
NELSON, P ;
GOMEZ, C ;
SIERRA, G ;
VAFA, C .
NUCLEAR PHYSICS B, 1988, 311 (02) :333-400
[2]  
Baulieu L., 1988, Nuclear Physics B, Proceedings Supplements, V5B, P12, DOI 10.1016/0920-5632(88)90366-0
[3]   MEAN FIELD-THEORY, TOPOLOGICAL FIELD-THEORY, AND MULTIMATRIX MODELS [J].
DIJKGRAAF, R ;
WITTEN, E .
NUCLEAR PHYSICS B, 1990, 342 (03) :486-522
[4]   LOOP EQUATIONS AND VIRASORO CONSTRAINTS IN NONPERTURBATIVE 2-DIMENSIONAL QUANTUM-GRAVITY [J].
DIJKGRAAF, R ;
VERLINDE, H ;
VERLINDE, E .
NUCLEAR PHYSICS B, 1991, 348 (03) :435-456
[5]  
DIJKGRAAF R, 1990, STRING THEORY QUANTU
[6]   TOPOLOGICAL COUPLINGS AND CONTACT TERMS IN 2D FIELD-THEORY [J].
DISTLER, J ;
NELSON, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 138 (02) :273-290
[7]   SEMIRIGID SUPERGRAVITY [J].
DISTLER, J ;
NELSON, P .
PHYSICAL REVIEW LETTERS, 1991, 66 (15) :1955-1958
[8]   2D QUANTUM-GRAVITY, TOPOLOGICAL FIELD-THEORY AND THE MULTICRITICAL MATRIX MODELS [J].
DISTLER, J .
NUCLEAR PHYSICS B, 1990, 342 (03) :523-538
[9]  
DISTLER J, UNPUB, P24024
[10]   WEIL ALGEBRA STRUCTURE AND GEOMETRICAL MEANING OF BRST TRANSFORMATION IN TOPOLOGICAL QUANTUM-FIELD THEORY [J].
KANNO, H .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1989, 43 (03) :477-484