ANDERSON LOCALIZATION FOR THE ALMOST MATHIEU EQUATION - A NONPERTURBATIVE PROOF

被引:30
作者
JITOMIRSKAYA, SY [1 ]
机构
[1] INT EARTHQUAKE PREDICT THEORY & MATH GEOPHYS INST,MOSCOW,RUSSIA
关键词
D O I
10.1007/BF02099736
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that for any diophantine rotation angle omega and a.e. phase theta the almost Mathieu operator (H(theta)PSI)n = PSI(n-1 + PSI(n+1) + lambda cos(2pi(theta + nomega))PSI(n) has pure point spectrum with exponentially decaying eigenfunctions for lambda greater-than-or-equal-to 15. We also prove the existence of some pure point spectrum for any lambda greater-than-or-equal-to 5.4.
引用
收藏
页码:49 / 57
页数:9
相关论文
共 11 条
[1]   ALMOST PERIODIC SCHRODINGER-OPERATORS .2. THE INTEGRATED DENSITY OF STATES [J].
AVRON, J ;
SIMON, B .
DUKE MATHEMATICAL JOURNAL, 1983, 50 (01) :369-391
[2]   PURELY ABSOLUTELY CONTINUOUS-SPECTRUM FOR ALMOST MATHIEU OPERATORS [J].
CHULAEVSKY, V ;
DELYON, F .
JOURNAL OF STATISTICAL PHYSICS, 1989, 55 (5-6) :1279-1284
[3]  
Cornfeld Isaac P., 1982, ERGODIC THEORY, V245
[4]  
CYCON HL, 1987, SCHRODINER OPERATORS
[5]   ABSENCE OF LOCALIZATION IN THE ALMOST MATHIEU EQUATION [J].
DELYON, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (01) :L21-L23
[6]   THE POSITIVITY OF THE LYAPUNOV EXPONENT AND THE ABSENCE OF THE ABSOLUTELY CONTINUOUS-SPECTRUM FOR THE ALMOST-MATHIEU EQUATION [J].
FIGOTIN, AL ;
PASTUR, LA .
JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (04) :774-777
[7]   CONSTRUCTIVE PROOF OF LOCALIZATION IN THE ANDERSON TIGHT-BINDING MODEL [J].
FROHLICH, J ;
MARTINELLI, F ;
SCOPPOLA, E ;
SPENCER, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 101 (01) :21-46
[8]   LOCALIZATION FOR A CLASS OF ONE-DIMENSIONAL QUASI-PERIODIC SCHRODINGER-OPERATORS [J].
FROHLICH, J ;
SPENCER, T ;
WITTWER, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 132 (01) :5-25
[9]   A RELATION BETWEEN AC SPECTRUM OF ERGODIC JACOBI MATRICES AND THE SPECTRA OF PERIODIC APPROXIMANTS [J].
LAST, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 151 (01) :183-192