CONSTRUCTION OF NONCRITICAL STRING FIELD-THEORY BY TRANSFER-MATRIX FORMALISM IN DYNAMICAL TRIANGULATION

被引:73
作者
WATABIKI, Y
机构
[1] Institute for Nuclear Study, University of Tokyo, Tanashi, Tokyo
关键词
D O I
10.1016/0550-3213(95)00010-P
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In the framework of the dynamical triangulation we construct non-critical string field theories at the discrete level (including c > 1 cases) by using the transfer matrix formalism. For the dynamical triangulation which corresponds to the multicritical one-matrix model (including the c = 0 case), we succeed in taking the continuum limit and obtaining the non-critical string field theories at the continuous level. We also study the universality of the c = 0 non-critical string field theory. These non-critical string field theories are new methods of analyzing the dynamical triangulation.
引用
收藏
页码:119 / 163
页数:45
相关论文
共 31 条
[1]  
Agishtein M. E., 1990, International Journal of Modern Physics C (Physics and Computers), V1, P165, DOI 10.1142/S0129183190000086
[2]   GEOMETRY OF A 2-DIMENSIONAL QUANTUM-GRAVITY - NUMERICAL STUDY [J].
AGISHTEIN, ME ;
MIGDAL, AA .
NUCLEAR PHYSICS B, 1991, 350 (03) :690-728
[3]   DISEASES OF TRIANGULATED RANDOM SURFACE MODELS, AND POSSIBLE CURES [J].
AMBJORN, J ;
DURHUUS, B ;
FROHLICH, J .
NUCLEAR PHYSICS B, 1985, 257 (03) :433-449
[4]   ANALYTICAL AND NUMERICAL STUDY OF A MODEL OF DYNAMICALLY TRIANGULATED RANDOM SURFACES [J].
BOULATOV, DV ;
KAZAKOV, VA ;
KOSTOV, IK ;
MIGDAL, AA .
NUCLEAR PHYSICS B, 1986, 275 (04) :641-686
[5]   POSSIBLE TYPES OF CRITICAL-BEHAVIOR AND THE MEAN SIZE OF DYNAMICALLY TRIANGULATED RANDOM SURFACES [J].
BOULATOV, DV ;
KAZAKOV, VA ;
KOSTOV, IK ;
MIGDAL, AA .
PHYSICS LETTERS B, 1986, 174 (01) :87-93
[6]   PLANAR DIAGRAMS [J].
BREZIN, E ;
ITZYKSON, C ;
PARISI, G ;
ZUBER, JB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 59 (01) :35-51
[7]   EXACTLY SOLVABLE FIELD-THEORIES OF CLOSED STRINGS [J].
BREZIN, E ;
KAZAKOV, VA .
PHYSICS LETTERS B, 1990, 236 (02) :144-150
[8]   PLANAR DIAGRAMS, TWO-DIMENSIONAL LATTICE GRAVITY AND SURFACE MODELS [J].
DAVID, F .
NUCLEAR PHYSICS B, 1985, 257 (01) :45-58
[9]   STRINGS IN LESS THAN ONE DIMENSION [J].
DOUGLAS, MR ;
SHENKER, SH .
NUCLEAR PHYSICS B, 1990, 335 (03) :635-654
[10]   A NONPERTURBATIVE TREATMENT OF 2-DIMENSIONAL QUANTUM-GRAVITY [J].
GROSS, DJ ;
MIGDAL, AA .
NUCLEAR PHYSICS B, 1990, 340 (2-3) :333-365