REACTION OF ATOMIC-HYDROGEN WITH SI(111) SURFACES - FORMATION OF MONOHYDRIDE AND TRIHYDRIDE PHASES

被引:28
作者
PANDEY, KC
机构
关键词
HYDROGEN; -; Adsorption;
D O I
10.1147/rd.223.0250
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
By using a realistic tight-binding or LCAO (linear combination of atomic orbitals) model, detailed calculations of surface states, local densities of states, and theoretically simulated photoemission spectra have been carried out for two qualitatively distinct structural models for chemisorption of atomic hydrogen on Si(111)1 multiplied by 1 surfaces. In the low-coverage model, called the monohydride phase or Si(111):H, it is assumed that a single hydrogen atom sits on top of each surface Si atom, thus saturating all dangling bonds. In the high-coverage model, designated as the trihydride phase or Si(111):SiH//3, SiH//3 radicals are bonded to the surface Si atoms. Due to the radically different atomic structures, the theoretical spectra of the two phases show striking differences. A comparison of the theoretical spectra with the ultraviolet photoemission spectra taken during hydrogen chemisorption on the quenched Si(111)1 multiplied by 1 surface clearly shows that at low coverages the monohydride is formed. while at high coverages the trihydride phase is formed.
引用
收藏
页码:250 / 259
页数:10
相关论文
共 30 条