ON A NEW CLASS OF COMPLETELY INTEGRABLE NONLINEAR-WAVE EQUATIONS .2. MULTI-HAMILTONIAN STRUCTURE

被引:59
作者
NUTKU, Y [1 ]
机构
[1] BOSPHORUS UNIV, ISTANBUL, TURKEY
关键词
D O I
10.1063/1.527749
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:2579 / 2585
页数:7
相关论文
共 23 条
[11]   REDUCTION TECHNIQUES FOR INFINITE-DIMENSIONAL HAMILTONIAN-SYSTEMS - SOME IDEAS AND APPLICATIONS [J].
MAGRI, F ;
MOROSI, C ;
RAGNISCO, O .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 99 (01) :115-140
[12]   SIMPLE-MODEL OF INTEGRABLE HAMILTONIAN EQUATION [J].
MAGRI, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (05) :1156-1162
[13]  
Magri F., 1984, GEOMETRICAL CHARACTE
[14]  
MORRISON PJ, 1982, AIP C P, V88
[15]   ON A NEW CLASS OF COMPLETELY INTEGRABLE NONLINEAR-WAVE EQUATIONS .1. INFINITELY MANY CONSERVATION-LAWS [J].
NUTKU, Y .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (06) :1237-1242
[16]   CANONICAL FORMULATION OF SHALLOW-WATER WAVES [J].
NUTKU, Y .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (18) :4195-4201
[17]   EVOLUTION EQUATIONS POSSESSING INFINITELY MANY SYMMETRIES [J].
OLVER, PJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (06) :1212-1215
[18]  
OLVER PJ, 1986, APPLICATIONS LIE GRO
[19]  
Olver PJ., 1984, CONT MATH, V28, P231, DOI DOI 10.1090/C0NM/028/751987)
[20]  
POISSON SD, 1808, J EC POLYTECH, V7