OSCILLATION MODES, TRANSIENT CHAOS AND ITS CONTROL IN A MODULATION-DOPED SEMICONDUCTOR DOUBLE-HETEROSTRUCTURE

被引:15
作者
REZNIK, D
SCHOLL, E
机构
[1] Institut für Theoretische Physik, Technische Universität Berlin, Berlin 12, W-1000
来源
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER | 1993年 / 91卷 / 03期
关键词
D O I
10.1007/BF01344059
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The nonlinear dynamics of real space transfer for a 2D electron gas in a system of two adjacent AlxGa1-xAs/GaAs-heterolayers under parallel current conduction has been investigated numerically. The mechanisms which have been taken into account are transfer of electrons by thermionic emission and nonresonant tunneling and the delayed dielectric relaxation of the interface potential barrier. We predict bistability of an asymmetric and a symmetric self-generated oscillation mode, a quasiperiodic route to chaos and transient chaos with mean transient times obeying a universal critical scaling law. Unstable periodic orbits of the chaotic repeller can be stabilized by a simple delayed feedback control, thus providing a widely tunable semiconductor oscillator.
引用
收藏
页码:309 / 316
页数:8
相关论文
共 24 条
[11]   CONTROLLING CHAOS [J].
OTT, E ;
GREBOGI, C ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1990, 64 (11) :1196-1199
[12]  
PACHA F, 1978, ELECTRON COMMUN, V32, P235
[13]   CONTINUOUS CONTROL OF CHAOS BY SELF-CONTROLLING FEEDBACK [J].
PYRAGAS, K .
PHYSICS LETTERS A, 1992, 170 (06) :421-428
[14]   HOT-ELECTRONS IN LOW-DIMENSIONAL STRUCTURES [J].
RIDLEY, BK .
REPORTS ON PROGRESS IN PHYSICS, 1991, 54 (02) :169-256
[15]   REAL-SPACE TRANSFER AND HOT-ELECTRON TRANSPORT-PROPERTIES IN III-V-SEMICONDUCTOR HETEROSTRUCTURES [J].
SAKAMOTO, R ;
AKAI, K ;
INOUE, M .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1989, 36 (10) :2344-2352
[16]   NOVEL MECHANISM OF A REAL-SPACE TRANSFER OSCILLATOR [J].
SCHOLL, E ;
AOKI, K .
APPLIED PHYSICS LETTERS, 1991, 58 (12) :1277-1279
[17]  
SCHOLL E, 1990, 20TH INTERNATIONAL CONFERENCE ON THE PHYSICS OF SEMICONDUCTORS, VOLS 1-3, P1125
[18]  
SCHOLL E, 1987, SPRINGER SERIES SYNE, V35
[19]  
SCHOLL E, 1993, NAGATIVE DIFFERENTIA
[20]  
SCHOLL E, 1992, NONLINEAR DYNAMICS S