ON QUADRATURE METHODS FOR THE DOUBLE-LAYER POTENTIAL EQUATION OVER THE BOUNDARY OF A POLYHEDRON

被引:5
作者
RATHSFELD, A
机构
[1] Institut für Angewandte Analysis und Stochastik, Berlin, D-10117
关键词
D O I
10.1007/BF01385688
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a quadrature method for the solution of the double layer potential equation corresponding to Laplace's equation in a three-dimensional polyhedron. We prove the stability for our method in case of special triangulations over the boundary of the polyhedron. The assumptions imposed on the triangulations are analogous to those appearing in the one-dimensional case. Finally, we establish the rates of convergence and discuss the effect of mesh refinement near the corners and edges of the polyhedron.
引用
收藏
页码:67 / 95
页数:29
相关论文
共 30 条
[1]   LOCALIZED GALERKIN ESTIMATES FOR BOUNDARY INTEGRAL-EQUATIONS ON LIPSCHITZ-DOMAINS [J].
ADOLFSSON, V ;
GOLDBERG, M ;
JAWERTH, B ;
LENNERSTAD, H .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (05) :1356-1374
[2]  
ATKINSON KE, 1992, 29 U IOWA DEP MATH R
[3]  
Baker C.T.H., 1977, NUMERICAL TREATMENT
[4]  
CHANDLER GA, 1988, SIAM J NUMER ANAL, V25, P1118
[5]  
Ciarlet P, 1979, FINITE ELEMENT METHO
[6]   ERROR ANALYSIS OF A BOUNDARY ELEMENT COLLOCATION METHOD FOR A SCREEN PROBLEM IN R3 [J].
COSTABEL, M ;
PENZEL, F ;
SCHNEIDER, R .
MATHEMATICS OF COMPUTATION, 1992, 58 (198) :575-586
[7]   ON SPLINE APPROXIMATION FOR A CLASS OF NONCOMPACT INTEGRAL-EQUATION [J].
ELSCHNER, J .
MATHEMATISCHE NACHRICHTEN, 1990, 146 :271-321
[8]   THE DOUBLE-LAYER POTENTIAL OPERATOR OVER POLYHEDRAL DOMAINS-II - SPLINE GALERKIN METHODS [J].
ELSCHNER, J .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1992, 15 (01) :23-37
[9]  
ENGELS H, 1988, NUMERICAL QUADRATURE
[10]  
GOHBERG L, 1979, EINFUHRUNG THEORIE E