A MIXED FINITE-ELEMENT METHOD FOR APPROXIMATING INCOMPRESSIBLE MATERIALS

被引:8
作者
DOBROWOLSKI, M
机构
[1] Universitat Erlangen-Nurnberg, Erlangen
关键词
FINITE ELEMENTS; INCOMPRESSIBLE ELASTICITY;
D O I
10.1137/0729023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A mixed finite element method is proposed for approximating the deformation u of a plane incompressible material satisfying the condition det NABLA-u = 1. For piecewise linear shape functions it is proved that the discrete solutions exist and converge with nearly quasi-optimal rates in L infinity. The corresponding nonlinear system is iteratively solved by a multigrid method.
引用
收藏
页码:365 / 389
页数:25
相关论文
共 21 条
[1]  
AGMON L, 1964, COMMUN PUR APPL MATH, V17, P623
[2]  
BALL JM, 1977, ARCH RATION MECH AN, V63, P337, DOI 10.1007/BF00279992
[3]  
BREZZI F, 1984, GAMM C KIEL, P11
[4]  
Cattabriga L., 1961, REND MAT SEM U PADOV, V31, P308
[5]  
Ciarlet P. G., 2002, FINITE ELEMENT METHO
[6]  
CLEMENT P, 1975, REV FR AUTOMAT INFOR, V9, P77
[7]  
DOBROWLSKI M, 1990, BER I ANGEWANDTE MAT, V138
[8]   FINITE-ELEMENT METHODS FOR NON-LINEAR ELLIPTIC-SYSTEMS OF 2ND ORDER [J].
DOBROWOLSKI, M ;
RANNACHER, R .
MATHEMATISCHE NACHRICHTEN, 1980, 94 :155-172
[9]   SHARP MAXIMUM NORM ERROR-ESTIMATES FOR FINITE-ELEMENT APPROXIMATIONS OF THE STOKES PROBLEM IN 2-D [J].
DURAN, R ;
NOCHETTO, RH ;
WANG, JP .
MATHEMATICS OF COMPUTATION, 1988, 51 (184) :491-506
[10]   POINTWISE ACCURACY OF A STABLE PETROV-GALERKIN APPROXIMATION TO THE STOKES PROBLEM [J].
DURAN, RG ;
NOCHETTO, RH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (06) :1395-1406