A MIXED FINITE-ELEMENT METHOD FOR APPROXIMATING INCOMPRESSIBLE MATERIALS

被引:8
作者
DOBROWOLSKI, M
机构
[1] Universitat Erlangen-Nurnberg, Erlangen
关键词
FINITE ELEMENTS; INCOMPRESSIBLE ELASTICITY;
D O I
10.1137/0729023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A mixed finite element method is proposed for approximating the deformation u of a plane incompressible material satisfying the condition det NABLA-u = 1. For piecewise linear shape functions it is proved that the discrete solutions exist and converge with nearly quasi-optimal rates in L infinity. The corresponding nonlinear system is iteratively solved by a multigrid method.
引用
收藏
页码:365 / 389
页数:25
相关论文
共 21 条
[11]   WEIGHTED INS-SUP CONDITION AND POINTWISE ERROR-ESTIMATES FOR THE STOKES PROBLEM [J].
DURAN, RG ;
NOCHETTO, RH .
MATHEMATICS OF COMPUTATION, 1990, 54 (189) :63-79
[12]   ASYMPTOTIC L-INFINITY-ERROR ESTIMATES FOR LINEAR FINITE-ELEMENT APPROXIMATIONS OF QUASILINEAR BOUNDARY-VALUE PROBLEMS [J].
FREHSE, J ;
RANNACHER, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (02) :418-431
[13]  
Girault V., 1986, FINITE ELEMENT METHO, V5
[14]  
HUGHES TJR, 1988, PITMAN RES NOTES MAT, V170, P135
[15]   COMPATIBILITY CONDITION AND EXISTENCE RESULTS IN DISCRETE FINITE INCOMPRESSIBLE ELASTICITY [J].
LETALLEC, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1981, 27 (02) :239-259
[16]  
LINDEN J, 1988, PARALLEL MULTIGRID S
[17]  
NITSCHE JA, 1975, 2ND C FIN EL RENNES
[18]   RECENT DEVELOPMENTS IN THE THEORY OF FINITE-ELEMENT APPROXIMATIONS OF BOUNDARY-VALUE PROBLEMS IN NON-LINEAR ELASTICITY [J].
ODEN, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1979, 17-8 (JAN) :183-202
[19]  
SCHAFER M, 1987, THESIS I ANGEWANDTE
[20]  
ZLAMAL JM, 1974, SIAM J NUMER ANAL, V11, P347