A rational approach was taken to improve the stability of subtilisin BPN' to autoproteolysis. Two sites of autoproteolysis were identified by isolation of early autolysis products and amino-terminal sequence analysis. These studies showed that subtilisin rapidly cleaves Ala48-Ser49 and Ser163-Thr164 peptide bonds at elevated temperatures. These two sites appear in regions of high mobility as estimated from crystallographic B-factors and are in extended surface loops. To improve the resistance to thermal-induced autolysis, we replaced sequences around these two sites with sequences derived from a thermophilic homologue of subtilisin, thermitase. Thermitase contains a Ca2+-binding site in the region surrounding Ser49. When the Ca2+-binding segment of thermitase corresponding to residues 45-63 of subtilisin BPN' was installed into subtilisin BPN', the chimeric protein gained the ability to bind another Ca2+ with moderate affinity (K(d) approximately 100-mu-M). This enzyme had the same k(cat) as wild-type, had a K(M) value 8-fold larger than wild-type, and was slightly less stable to thermal inactivation in EDTA. However, in 10 mM CaCl2, the mutant subtilisin BPN' was 10-fold more stable to irreversible inactivation at 60-degrees-C than wild-type subtilisin BPN' as measured by residual activity against the substrate sAAPF-pna. Next, mutations and deletions derived from thermitase were introduced near the second autolysis loop in subtilisin BPN' (residues 158-165). However, all of these mutants were less stable than wild-type subtilisin. Thus, some (but not all) mutations derived from a thermophilic homologue near sites of autolysis can be stabilizing to a mesophilic protease.