CONTRIBUTION OF VITAMIN-A TO THE OXIDATION RESISTANCE OF HUMAN LOW-DENSITY LIPOPROTEINS

被引:47
作者
LIVREA, MA [1 ]
TESORIERE, L [1 ]
BONGIORNO, A [1 ]
PINTAUDI, AM [1 ]
CIACCIO, M [1 ]
RICCIO, A [1 ]
机构
[1] UNIV PALERMO, INST PHARMACOL, PALERMO, ITALY
关键词
VITAMIN-A; RETINOL; RETINYL ESTERS; ANTIOXIDANTS; LDL; LIPID PEROXIDATION; ATHEROSCLEROSIS; FREE RADICALS;
D O I
10.1016/0891-5849(94)00151-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study investigated the antioxidant contribution of vitamin A in protecting human low density lipoprotein (LDL) against copper-stimulated oxidation. The presence of small amounts of retinol (0.033 +/- 0.012 nmol/mol LDL) and retinyl palmitate (0.036 +/- 0.021 nmol/mol LDL) was routinely ascertained in the LDL. A single oral supplementation with 20,000 IU vitamin A caused a two- to three-fold increase of retinol and retinyl palmitate in the LDL isolated 8 h after the supplementation. In comparison to autologous-control LDL, vitamin A-enriched LDL were more resistant to oxidation, as expressed both by a clear delay in the onset of lipid peroxidation and by a reduction of the rate of conjugated diene hydroperoxide production during the propagation phase. The calculated incremental increase in the lag phase produced by 1 mol retinol per mol LDL is about 1000 min, suggesting that retinol is more potent than alpha-tocopherol in LDL. Oxidation experiments carried out with LDL isolated from plasma incubated in vitro with either retinol or retinyl palmitate indicated that retinol does lengthen the lag phase, whereas retinyl palmitate can slow the rate of peroxyl chain propagation, without affecting the duration of the lag phase. Temporal disappearance of retinol and retinyl palmitate, followed in comparison with that of alpha-tocopherol and beta-carotene, indicated that the reactivity of the antioxidants with lipoperoxyl radicals was in the sequence alpha-tocopherol, retinol, beta-carotene, and retinyl esters. Although the detailed antioxidant mechanism remains to be elucidated, these results suggest that LDL-associated vitamin A can play a role in maintaining the antioxidant status of LDL during oxidative stress in vivo.
引用
收藏
页码:401 / 409
页数:9
相关论文
共 48 条
[41]   MODIFICATION OF LOW-DENSITY LIPOPROTEIN BY ENDOTHELIAL-CELLS INVOLVES LIPID-PEROXIDATION AND DEGRADATION OF LOW-DENSITY LIPOPROTEIN PHOSPHOLIPIDS [J].
STEINBRECHER, UP ;
PARTHASARATHY, S ;
LEAKE, DS ;
WITZTUM, JL ;
STEINBERG, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (12) :3883-3887
[42]   UBIQUINOL-10 PROTECTS HUMAN LOW-DENSITY-LIPOPROTEIN MORE EFFICIENTLY AGAINST LIPID-PEROXIDATION THAN DOES ALPHA-TOCOPHEROL [J].
STOCKER, R ;
BOWRY, VW ;
FREI, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (05) :1646-1650
[43]   THE PEROXIDIZING EFFECT OF ALPHA-TOCOPHEROL ON AUTOXIDATION OF METHYL LINOLEATE IN BULK PHASE [J].
TERAO, J ;
MATSUSHITA, S .
LIPIDS, 1986, 21 (04) :255-260
[44]  
Tesoriere L., 1994, Retinoids: from basic science to clinical applications., P305
[45]   ANTIOXIDANT ACTIVITY OF ALL-TRANS-RETINOYL IN HOMOGENEOUS SOLUTION AND IN PHOSPHATIDYLCHOLINE LIPOSOMES [J].
TESORIERE, L ;
CIACCIO, M ;
BONGIORNO, A ;
RICCIO, A ;
PINTAUDI, AM ;
LIVREA, MA .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1993, 307 (01) :217-223
[46]   FATTY-ACID COMPOSITION OF LOW-DENSITY-LIPOPROTEIN INFLUENCES ITS SUSCEPTIBILITY TO AUTOXIDATION [J].
THOMAS, MJ ;
THORNBURG, T ;
MANNING, J ;
HOOPER, K ;
RUDEL, LL .
BIOCHEMISTRY, 1994, 33 (07) :1828-1834
[47]   PLASMA-LIPOPROTEIN RETINOIDS AFTER VITAMIN A FEEDING IN NORMAL MAN - MINIMAL APPEARANCE OF RETINYL ESTERS AMONG LOW-DENSITY LIPOPROTEINS [J].
WILSON, DE ;
CHAN, IF ;
BALL, M .
METABOLISM-CLINICAL AND EXPERIMENTAL, 1983, 32 (05) :514-517
[48]   PEROXYL-RADICAL REACTION OF RETINYL ACETATE IN SOLUTION [J].
YAMAUCHI, R ;
MIYAKE, N ;
KATO, K ;
UENO, Y .
BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 1992, 56 (10) :1529-1532