RENORMALIZATION-GROUP APPROACH TO MATRIX MODELS IN 2-DIMENSIONAL QUANTUM-GRAVITY

被引:12
作者
AYALA, C [1 ]
机构
[1] UNIV AUTONOMA BARCELONA, INST FIS DALTES ENERGIES, E-08193 BARCELONA, SPAIN
关键词
D O I
10.1016/0370-2693(93)90533-N
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We explore the implications of recent work by Brezin and Zinn-Justin, applying the renormalization group techniques from critical phenomena to the scaling limit of matrix models in two-dimensional quantum gravity. They endeavour to get the lowest order fixed points of the theory giving insight into the critical points of the theory. We show that at leading order the perturbative result is equal to the saddle-point approximation result. We calculate the next-to-leading order in the perturbative expansion exploring the goodness of the approach.
引用
收藏
页码:55 / 63
页数:9
相关论文
共 24 条
[1]   THE D = 1 MATRIX MODEL AND THE RENORMALIZATION-GROUP [J].
ALFARO, J ;
DAMGAARD, PH .
PHYSICS LETTERS B, 1992, 289 (3-4) :342-346
[2]   DISEASES OF TRIANGULATED RANDOM SURFACE MODELS, AND POSSIBLE CURES [J].
AMBJORN, J ;
DURHUUS, B ;
FROHLICH, J .
NUCLEAR PHYSICS B, 1985, 257 (03) :433-449
[3]   RENORMALIZATION-GROUP APPROACH TO MATRIX MODELS [J].
BREZIN, E ;
ZINNJUSTIN, J .
PHYSICS LETTERS B, 1992, 288 (1-2) :54-58
[4]   EXACTLY SOLVABLE FIELD-THEORIES OF CLOSED STRINGS [J].
BREZIN, E ;
KAZAKOV, VA .
PHYSICS LETTERS B, 1990, 236 (02) :144-150
[5]  
BREZIN E, LPTENS9210 EC NORM S
[6]   PLANAR DIAGRAMS, TWO-DIMENSIONAL LATTICE GRAVITY AND SURFACE MODELS [J].
DAVID, F .
NUCLEAR PHYSICS B, 1985, 257 (01) :45-58
[7]   A MODEL OF RANDOM SURFACES WITH NON-TRIVIAL CRITICAL-BEHAVIOR [J].
DAVID, F .
NUCLEAR PHYSICS B, 1985, 257 (04) :543-576
[8]  
DAVID F, 1988, MOD PHYS LETT A, V3, P207
[9]   CONFORMAL FIELD-THEORY AND 2-D QUANTUM-GRAVITY [J].
DISTLER, J ;
KAWAI, H .
NUCLEAR PHYSICS B, 1989, 321 (02) :509-527
[10]   STRINGS IN LESS THAN ONE DIMENSION [J].
DOUGLAS, MR ;
SHENKER, SH .
NUCLEAR PHYSICS B, 1990, 335 (03) :635-654