RENORMALIZATION-GROUP APPROACH TO MATRIX MODELS IN 2-DIMENSIONAL QUANTUM-GRAVITY

被引:12
作者
AYALA, C [1 ]
机构
[1] UNIV AUTONOMA BARCELONA, INST FIS DALTES ENERGIES, E-08193 BARCELONA, SPAIN
关键词
D O I
10.1016/0370-2693(93)90533-N
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We explore the implications of recent work by Brezin and Zinn-Justin, applying the renormalization group techniques from critical phenomena to the scaling limit of matrix models in two-dimensional quantum gravity. They endeavour to get the lowest order fixed points of the theory giving insight into the critical points of the theory. We show that at leading order the perturbative result is equal to the saddle-point approximation result. We calculate the next-to-leading order in the perturbative expansion exploring the goodness of the approach.
引用
收藏
页码:55 / 63
页数:9
相关论文
共 24 条
[11]  
GAO HB, 1992, ICTP IC30292 PREPR
[12]   2D GRAVITY+1D MATTER [J].
GINSPARG, P ;
ZINNJUSTIN, J .
PHYSICS LETTERS B, 1990, 240 (3-4) :333-340
[13]   A NONPERTURBATIVE SOLUTION OF D = 1 STRING THEORY [J].
GROSS, DJ ;
MILJKOVIC, N .
PHYSICS LETTERS B, 1990, 238 (2-4) :217-223
[14]   NONPERTURBATIVE 2-DIMENSIONAL QUANTUM-GRAVITY [J].
GROSS, DJ ;
MIGDAL, AA .
PHYSICAL REVIEW LETTERS, 1990, 64 (02) :127-130
[15]  
GROSS GJ, 1991, 2 DIMENSIONAL QUANTU
[16]  
HEARN A, 1991, REDUCE 3 4
[17]  
HIGUCHI S, 1993, TITHEP215 TOK I TECH
[18]   BILOCAL REGULARIZATION OF MODELS OF RANDOM SURFACES [J].
KAZAKOV, VA .
PHYSICS LETTERS B, 1985, 150 (04) :282-284
[19]   FRACTAL STRUCTURE OF 2D - QUANTUM-GRAVITY [J].
KNIZHNIK, VG ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
MODERN PHYSICS LETTERS A, 1988, 3 (08) :819-826
[20]   ON THE ONE-DIMENSIONAL DISCRETIZED STRING [J].
PARISI, G .
PHYSICS LETTERS B, 1990, 238 (2-4) :209-212