SEMICLASSICAL WAVE-FUNCTION OF THE PERIODIC TODA LATTICE

被引:3
作者
MATSUYAMA, A
机构
[1] Department of Physics, Faculty of Liberal Arts, Shizuoka University, Shizuoka, 422
关键词
D O I
10.1016/0375-9601(93)90969-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The semiclassical wave function of the periodic Toda lattice is constructed by the Keller method. It is shown that the integer quantum numbers have a close relationship to the structure of the invariant torus of the classical motion.
引用
收藏
页码:415 / 420
页数:6
相关论文
共 13 条
[1]   QUANTIZATION CONDITIONS FOR THE PERIODIC TODA CHAIN - INADEQUACY OF BETHE-ANSATZ METHODS [J].
FOWLER, M ;
FRAHM, H .
PHYSICAL REVIEW B, 1989, 39 (16) :11800-11809
[2]   QUANTUM-MECHANICAL TODA LATTICE [J].
GUTZWILLER, MC .
ANNALS OF PHYSICS, 1980, 124 (02) :347-381
[3]   THE QUANTUM-MECHANICAL TODA LATTICE .2. [J].
GUTZWILLER, MC .
ANNALS OF PHYSICS, 1981, 133 (02) :304-331
[4]   ON THE QUANTIZATION OF THE 3-PARTICLE TODA LATTICE [J].
ISOLA, S ;
KANTZ, H ;
LIVI, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (13) :3061-3076
[5]   CORRECTED BOHR-SOMMERFELD QUANTUM CONDITIONS FOR NONSEPARABLE SYSTEMS [J].
KELLER, JB .
ANNALS OF PHYSICS, 1958, 4 (02) :180-188
[6]   PERIODIC TODA LATTICE IN QUANTUM-MECHANICS [J].
MATSUYAMA, A .
ANNALS OF PHYSICS, 1992, 220 (02) :300-334
[7]   NUMERICAL STUDY OF THE QUANTUM-MECHANICAL TODA LATTICE [J].
MATSUYAMA, A .
PHYSICS LETTERS A, 1991, 161 (02) :124-129
[8]  
Ozorio de Almeida A.M., 1988, HAMILTONIAN SYSTEMS
[9]   THE PERIODIC TODA CHAIN AND A MATRIX GENERALIZATION OF THE BESSEL-FUNCTION RECURSION-RELATIONS [J].
PASQUIER, V ;
GAUDIN, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (20) :5243-5252
[10]  
SKLYANIN EK, 1985, LECTURE NOTES PHYSIC, V226